
A Memory-Efficient Parallel Single Pass
Architecture for Connected Component Labeling of

Streamed Images
Michael Klaiber, Lars Rockstroh, Zhe Wang, Yousef Baroud and Sven Simon

Institute for Parallel and Distributed Systems
University of Stuttgart, Stuttgart, Germany

michael.klaiber@ipvs.uni-stuttgart.de

Abstract—In classical connected component labeling algo-
rithms the image has to be scanned two times. The amount
of memory required for these algorithms is at least as high
as for storing a full image. By using single pass connected
component labeling algorithms, the memory requirement can be
reduced by one order of magnitude to only a single image row.
This memory reduction which avoids the requirement of high
bandwidth external memory is essential to obtain a hardware
efficient implementation on FPGAs. These single pass algorithms
mapped one-to-one to hardware resources on FPGAs can process
only one pixel per clock cycle in the best case. In order to enhance
the performance a scalable parallel memory-efficient single pass
algorithm for connected component labeling is proposed. The
algorithm reduces the amount of memory required by the
hardware architecture by a factor of 100 or more, for typical
image sizes, compared to a recently proposed parallel connected
component labeling algorithm. The architecture is also able to
process an image stream with high throughput without the need
of buffering a full image.

I. INTRODUCTION

The task of connected component labeling (CCL) is an im-
portant processing step in many image processing applications.
It performs the task of labeling all connected image pixels in a
binarized image in order to identify objects or compute certain
features of an object. The throughput of the CCL can strongly
influence the performance of the whole image processing
system as it is one of the first complex processing steps in
image processing applications. For this reason, a parallel CCL
algorithm with a memory-efficient architecture is proposed
here suited for high performance image processing applica-
tions. It is based on a scalable single pass CCL algorithm
which is memory-efficient and therefore especially suited for
FPGAs. By using the proposed architecture and algorithm
it is possible to achieve a high processing throughput for
performing connected component labeling of streamed images
without the need of buffering a full image, which requires
either much FPGA-internal memory or requires an external
high-bandwitdh memory.

A B C
D ?

Fig. 1. Pixel neighborhood.

In the next section, the state of the art and related algorithms
which cover memory-efficient and scalable CCL algorithms
are presented. In Section III the proposed algorithm and the as-
sociated architecture are presented. In Section IV the proposed
algorithm and architecture are discussed and experimental
results are shown and compared to existing approaches in the
literature.

II. RELATED WORK

The classical CCL algorithms require two scans of a bina-
rized image and have sequential data dependencies for every
pixel to be processed [1]. For storing the region labels, a
memory matrix with the same dimension as the image is
reserved. If a pixel belongs to the background of the image
the label 0 is assigned to it. Otherwise its label is determined
by the labels of the neighborhood pixels. For this decision the
neighbor pixels A, B, C and D are taken into account as shown
in Fig. 1.

A single pass CCL algorithm was described by Bailey et
al. [2]. The proposed architecture has two drawbacks:

• Large memory requirements: The amount of memory
required in a worst case scenario depends on the height
and width of the image.

• Lack of parallelism: The architecture is only capable of
processing one pixel per clock cycle.

In [3], [4] Ni Ma et al. improved the memory requirements
of the algorithm described in [2] by reusing labels. With this
improvement the amount of memory required is significantly
reduced and is only dependent on the width of the image.

Kumar et al. proposed a parallel architecture for CCL [5],
[6] which enhances the single pass algorithm used in [7]. In978-1-4673-2845-6/12/$31.00 c© 2012 IEEE

mklaiber
Schreibmaschinentext
This work was published in Proceedings of the International Conference on Field-Programmable Technology (FPT 2012), pages 159 - 165 , 2012.

mklaiber
Schreibmaschinentext

mklaiber
Schreibmaschinentext

mklaiber
Schreibmaschinentext

mklaiber
Schreibmaschinentext

that proposal the whole image is stored in a memory in prior to
processing. In order to gain a speed-up in processing, several
slices of the image are processed with different CCL units
independently. Therefore the CCL units fetch one line from
their image slice from the memory in sequence in a round
robin fashion. After processing each slice of an image, each
CCL unit passes a vector describing features of regions in their
image slice (not touching one of the edges) to a global FIFO
memory which collects all these feature vectors. All regions
touching one or both edges of an image slice are processed
by a coalescing unit (CU). This unit determines if two regions
of adjacent slices are connected. If they are connected the CU
merges their feature vectors. For this merging process the CCL
units are connected to the CU in a round-robin manner. The
merging scheme relies on the fact that each edge region has a
unique label in its image slice.

In [8] Lin et al. proposed a parallel architecture for CCL
which relies on a global memory matrix containing labels for
each image pixel. For this approach two passes for a single
image are necessary which on the one hand consumes a lot
of memory and therefore FPGA resources and on the other
hand needs twice as much processing cycles as a single pass
approach.

III. CONNECTED COMPONENT LABELING ALGORITHM
AND HARDWARE ARCHITECTURE

The proposed approach is an advancement of the streaming
CCL algorithm described in [3]. That architecture is able
to process an image in a streaming manner by processing
one pixel at a time. In order to enhance the throughput,
parallelism can be introduced by utilizing several parallel CCL
units operating independently [5]. For this approach the image
is cut into p slices, which are processed independently and
the output of the parallel CCL units is merged by a suited
algorithm as follows: If two regions from neighboring slices
touch the border of their slices at least in one common pixel,
they are recognized to be connected. This approach relies on
unambiguous labeling for regions touching the slices’ edges.
For this reason, the approach in [5] uses the CCL algorithm
described in [7], which assigns one label for each region in
the image. The amount of memory required for processing an
image which is of N ×M pixels for this algorithm depends
on the number of regions contained by the image. In the worst
case an image contains up to N

2 × M
2 regions.

A. Scalable Architecture

In the architecture proposed in [5], the whole image is
divided to p slices and saved to a memory in p correspondent
continuous data blocks. The access to this memory is granted
in a round-robin manner for each CCL unit. Each slice is
processed by a separate CCL unit. The CCL processing units
access this memory to read one line of their image slices
in each round robin cycle. The results of the CCL units are
merged by the coalescing unit. This coalescing unit merges
regions from two adjacent slices one after another. This means

CCL

Coalescing Unit

CCL CCL CCL

Pixel Stream

...

Feature Vectors
of non-edge
regions

Feature Vectors
of merged
regions

Output

Feature Vector
FIFO

Fig. 2. Scalable stream-based image slice processing for CCL.

if the image is cut into p slices the coalescing unit has to do
in the worst case p− 1 mergers for each processed row.

As depicted in Fig. 2, the proposed architecture distributes
the data pixel of one row of the image to several CCL units
instead of assigning different rows to different CCL units. In
this way a memory, which contains the whole image, can be
avoided. This is realized by passing ns = N

p pixels of each
row to every CCL unit. After the image has been processed
by the CCL units, all feature vectors of non-edge regions are
collected on the Feature Vector FIFO. The other feature vectors
are passed to the coalescing unit for merging, which pushes
the feature vectors also to the Feature Vector FIFO after the
merging process.

The pixel stream has a higher bandwidth than the inputs
of the CCL units. It is therefore necessary to buffer the pixel
data before they can be passed to a CCL unit. For this purpose
p buffers of the size ns are needed. The arrangement of the
buffers, the CCL units and the coalescing unit is depicted in
Fig. 2.

Since the proposed stream-based slice processing architec-
ture distributes the processing of one row to several CCL units,
the coalescing unit has to merge the regions touching the slice
edges of all p slices while scanning one line. To achieve this
requirement a new architecture for the coalescing unit (CU)
is proposed. Its main components are depicted in Fig. 3 and
will be described in the following paragraphs.

The inputs of the Feature Vector Merge (FVM) block can
be either connected to the CU’s inputs or to the Global Data
Table’s (GDT) outputs. Its output is connected to the GDT. In
this way both, feature vectors from the inputs and from the
outputs of the GDT, can be merged.

The Global Translation Tables (GTT) have the task to
address the GDT. Each of the p GTTs is responsible for the
translation of the labels used in one image slice to the labels
used in the GDT. They are connected to the GMT depending
on which two image slices are merged. The Global Merger

Feature
 Vector
Merge

Global
Data Table

Global
Merger
Table

{ {{{{

...

Slice p-1Slice p-2Slice 1Slice 0 ...

Global
Translation

Table 0

Global
Translation
Table p-1

LFVFV FV FVL

Coalescing Unit

FV= Feature
 Vector
L = Label

Read
out

control

Fig. 3. Stream based coalescing unit.

Table (GMT) records mergers of two entries of the GDT and
translates merged labels stored in one of the GTTs.

The merging process works as follows: All CCL units of
adjacent slices are connected to the coalescing unit two at a
time beginning with slice 0 and slice 1, followed by slice 1
and slice 2, until slice p− 2 and slice p− 1 is reached. In this
way the merging of the adjacent edge pixels of the current
row is performed. The CCL units connected to the CU pass
the labels of the edge pixels and the associated data table entry,
which contains the region’s feature vector, to the CU. If two
labels not being the background label 0, appear at the inputs
of the CU, their feature vectors are merged and saved to the
GDT of the CU. The address to which the merged feature
vector is saved is determined by the GTTs. For each of the p
slices of the image there is one GTT in the CU. It translates
a slice label to a label that is used in the GDT. For merging
processes, 3 cases can arise:

1) If two slice labels that have no entry in their associated
GTT are merged, they are stored to the GDT of the CU
to a new label. The GTTs of the two merged slices have
to be updated to point to the new assigned label in the
GDT.

2) In the case that only one slice label has an entry in its
associated GTT and one does not, the feature vector of
one input is merged with the GDT entry indexed by the
GTT entry of the other one. After the merging process
the GTTs of both labels have to point to the GDT entry
of the merged feature vector.

3) If both slice labels have an entry in their GTT, two
entries of the GDT have to be merged. The smaller of the

two labels is used for storing the merged feature vector.
This merger has to be recorded in the GMT to redirect
request for an already merged feature vector of the GDT.
The unused GDT entry has to be invalidated after this. In
case several labels of GMT entries are building a chain,
the readout control takes care of this during the readout
of the GDT.

In total, p GTTs, one GDT and one GMT are needed in the
coalescing unit. As each image slice can have a maximum
number of M global labels for the edge regions, the GTTs
should have the capacity to store M entries. To determine the
size of the GDT, the maximum number of regions touching
or crossing one or several slice edges have to be taken into
account. This means that the GDT has to be able to store up
to 2 × (p − 1) × M

2 entries in the worst case. The GMT has
to have the same capacity as the GDT, since it works in the
same label space as the GDT.

The pixels of the image slices are passed from the image
source to the CCL units in parallel – p in each clock cycle.
Therefore one row of the image consisting of N pixels is
processed in N

p clock cycles. As there are p image slices to
be merged by the coalescing unit, p − 1 mergers can occur
while processing one image row. In order to be able to process
these p− 1 mergers the processing of a single merger cannot
exceed more than nmerger cycles (as stated in inequality 1).
As shown in the architecture of the coalescing unit in Fig. 3
the feature vectors at the two inputs of the coalescing unit have
to pass three tables, namely GTT, GMT and the GDT. All of
these tables are realized as Block-RAM and have therefore a
read latency of one clock cycle. Accordingly a single merging
process in this architecture takes nmerger = 3 clock cycles
in order to be finished. Together with this information the
maximum number of image slices one coalescing unit is able
to merge can be defined by inequality 2.

nmerger 5
N

p× (p− 1)
(1)

p 5

√
N

nmerger
+

1

4
+

1

2
(2)

If the desired throughput cannot be reached using p image
slices according to inequality 2, the throughput can even be
further increased by cascading several coalescing units in a
tree using several stages. While the merging processes in the
coalescing units of the first stage are taking place, the labels
of the edges not being merged by a coalescing unit of the first
stage have to be stored for the second stage and translated to
new labels, if necessary. This can be performed until the root
of the tree is reached. The coalescing unit at the root of the
tree finally generates the combined feature vectors of all the
image slices.

B. CCL Architecture

The new algorithm enables the parallelization mentioned
in section III-A in a memory-efficient way. For applying the
new algorithm, the architecture proposed in [4], [7] with

Merger
table

A B C

D Row Buffer

Translation Table

Label Selection Merger control

Data
Table

Column Buffer

Column Buffer

Edge Merger Table

Edge Merger Table

Pixel Stream

Neighborhood Context

Fig. 4. Extended connected component labeling architecture.

an extension proposed in [3] is used. Fig. 4 shows this
architecture along with the new extensions needed for dealing
with global slice labels.

The neighborhood context block consists of four registers
A, B, C and D which contain the labels of the pixels located
in the row above the current pixel and in the same row to
the left of the current. It basically works in the same way as
a window filter. Pixel data are acquired in every clock cycle
from the image stream. The label of the current pixel generated
by the label section block is shifted to D every clock cycle.
For the generation of these labels the decision tree shown in
Fig. 7 is used. This label is shifted to the row buffer. It is
stored there for N cycles, where N is the number of pixels of
the width of the image. It returns to the neighborhood context
block after it passed the merger table and the translation table.
Back in the neighborhood context block it is shifted along the
registers A, B and C.

The fact that labels are reused in every row of the image
leads to the case that different regions in adjacent rows of the
image can have the same label. To resolve this ambiguity the
translation table is introduced. It translates the labels used in
the previous row to the labels used in the current row making
label reuse possible.

If there are two different labels in the neighborhood context
block after label translation, the regions belonging to these
two labels have to be merged. This merger is recorded in the
merger table. Since there can be several mergers, which have
data dependencies, label pairs to be merged are pushed on a
stack and evaluated at the end of the row. When the end of
a row is reached, the content of the stack is read in reverse
direction it was filled. In this way the merger table can be
updated and all data dependencies for the mergers occurred in
the current row are taken into account.

In the CCL unit the data table records the features of
each region by monitoring the labels of the pixels in the
neighborhood context block. Each region has one entry in the

Fig. 5. Example of conversion from local slice label to global slice label
and merger of global slice labels.

Fig. 6. Decision tree for global slice labels.

data table indexed by the region’s label. Whenever a region is
updated, its entry in the data table is updated as well. When
two regions are merged their entries in the data tables have to
be merged as well.

In order to process several parts of the image independently
the image is cut into slices. Each slice is processed by one CCL
unit. After all the CCL units have processed their slices, all
the feature vectors of the regions are recognized and written
to a memory.

Upon scanning the pixels of the image, the labels of the edge
pixels are stored on column buffers that are built as cache lines
of the size M . They are needed for merging the current image
slice with the adjacent slices after CCL. There is one column
buffer for each edge of the image slice, which is adjacent to
another image slice. If the label of an edge region is written
to the column buffer and this region is later merged with a

Fig. 7. Decision tree as proposed by [3]. A, B and C are the labels assigned
to the regions in the previous row. A”, B”, C” and D” are the labels assigned
to the regions in the current row.

different edge region, the label written to the column buffer
has to be updated to the new label. Since the column buffer
is built as a cache line it is not possible to access any entry
but the one at the output. Therefore the edge merging table
is introduced. It translates the edge labels at the output of the
column buffer. At the end of each row the merger control block
updates the edge merging table, with all mergers an edge label
is involved in, in the current row. This is done by following
the read out of the stack which is needed for the merger table.
After this step it can be guaranteed that pixels of each edge
region in the current image slice have the same label at the
output of the edge merger table.

The reuse of labels for each row in the image, introduced
in [3], has led to an enormous reduction in the memory
requirement. However in section III-A it is shown that regions
touching the edge of an image slice need an unambiguous
label for every pixel in the region. This cannot be guaranteed
by using the labeling scheme described in [3]. Therefore global
slice labels are introduced. A global slice label is assigned to
one region and cannot be used to mark a different region in
the image slice anymore. In contrast a local slice label can be
used in any row to mark a region and can be reused in every
row.

The label selection block decides the current pixel’s label
depending on the labels of the neighbor pixels. When a new
region is detected in a row for the first time a new label
is assigned. The pixel’s label can either be a local slice
label or a global slice label. The local slice label which is
assigned to a pixel is determined by the decision tree in Fig.
7. Simultaneously the decision whether a global slice label is
assigned to the current pixel is taken by the decision tree in
Fig. 6. If only one of both decision trees returns a label other
than zero, the non-zero label is assigned to the current pixel.
If both return a label other than zero, the global slice label is
preferred and assigned to the current pixel.

Table I
REQUIRED BUFFER SIZE (BITS) FOR DIFFERENT IMAGE SIZES.

Image size N ×M 1024× 512 2048× 1024

Kumar et al.
[5] N × (M + p)

0.5× 106

+1024× p
2.09× 106

+2048× p

Lin et al.[8] log2(
N×M

4
)

×N ×M
8.9× 106 39.8× 106

This work N 1024 2048

In case a global slice label is assigned to a pixel, which
has a local slice label in its neighborhood, the local slice label
has to be translated to the new assigned global slice label.
(point 2 in Fig. 5) This translation has to be recorded in the
translation table.When processing the next row the translated
label appears as global slice label in the neighborhood. In case
there are two global slice labels in the pixel’s neighborhood,
the regions belonging to these two global slice labels have
to be merged. (point 4 and 5 in Fig. 5) This can only
be the case if there are different global slice labels in the
neighborhood at position A-D or D-C [4]. When a merger
among two global slice labels occurs this merger is tracked on
the stack. At the end of the row the content of the merger table
is updated using the entries of the stack [7]. For the update
of the merger table the stack entries are read off the stack in
the reverse order they were written on it. The same procedure
takes place for the new introduced edge merger tables. The
edge merger tables are updated simultaneously to update the
merger table using the stack entries.

The distinction between local slice labels and global slice
labels is realized by separating the address space of the data
table, the merger table and the translation table in two parts.
The upper bound of local slice labels is given by nLL = N

2 , as
this is the maximum number of the number of regions which
can appear in a row. Therefore the addresses from 1 to nLL

are reserved for local slice labels. A new global slice label
is generated whenever an object pixel touches an edge of the
image slice and does not touch another pixel with a different
global slice label. For this reason the upper bound for the
number of global slice labels is M

2 for each edge of the two
edges of an image slice, i.e., nGL = M

2 ×2. The addresses for
the global slice labels range from nLL+1 to nLL+nGL+1.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The memory requirements for the architectures in [3], [4],
[5] as well as the proposed architecture depend on the number
of region labels (global slice and local slice labels) used in a
single CCL unit. This is because most of the tables contained
in the CCL units are indexed by the region labels.

Table II compares the number of region labels necessary in
the worst case for each proposal. The architectures in [2], [5],
[8] need N×M

4 labels in the worst case. This was improved
by [3] to N

2 , but the image cannot be processed in several
slices. The proposed architecture requires N

2 labels for local
slice labels and M

2 × 2× (p− 1) labels for global slice labels.
Parallel processing of several pixels of the image at the same

time is only possible with the architectures in [5], [8] and the

Table II
COMPARISON OF REQUIRED NUMBER OF LABELS FOR DIFFERENT ALGORITHMS FOR A WORST CASE IMAGE.

Author # slices required labels for images of size
N ×M pixels 1024× 512 pixels 2048× 1024 pixels 3072× 2048 pixels

Bailey et al. [2] 1 N×M
4

131072 524288 1.57× 106

Ni Ma et al.[3] 1 N
2

512 1024 1536

Kumar et al.[5] 2, 4, 8 N×M
4

131072 524288 1.57× 106

p N×M
4

131072 524288 1.57× 106

Lin et al. [8] p N×M
4

131072 524288 1.57× 106

This work 2 N
2

+M 1024 2048 3584

4 N
2

+M × 3 2048 4096 7680

8 N
2

+M × 7 4096 8192 15872

p N
2

+ M
2

× 2× (p− 1)

proposed architecture. To compare the memory requirements
of these algorithms two criteria have to be taken into account:
the amount of memory necessary for buffering image data and
the amount of memory required for performing CCL.

The required memory for CCL in [5] depends on image
width and height, since it is an enhancement of the algorithm
in [7], the memory requirement of which depends on the image
size. By introducing local and global slice labels the proposed
algorithm and architecture reduced the required memory for
CCL by a factor of more than 100.

Table I shows the number of required memory, which is
needed for buffering in prior to processing. For the approach in
[5] and [8] the whole image has to be buffered. When dealing
with high resolution images this requires either a lot of FPGA
resources or the usage of an external memory. In the proposed
approach only one row of the image has to be stored in prior to
processing, which reduces the buffer depending on the image
size by a factor of more than 100.

For evaluation of the proposed architecture and algorithm
the CCL unit from [3] together with the extensions pro-
posed in section III-B and the proposed coalescing unit were
described in VHDL. The synthesis results for the Xilinx
Virtex 6 XC6VLX240T show that the resource utilization of
the CCL units are similar to [3] except that the operating
frequency here is in the range of 170 MHz depending on
the image size. In [3] this architecture reached an operating
frequency of 40 MHz, which is most likely from the use
of an older FPGA technology. Therefore only the results of
the coalescing unit are discussed. The resource utilization for
the coalescing unit is shown in table III. This table gives an
overview of the number of registers, look-up tables (LUTs)
and block RAMs (BRAMs) required for realizing different
variations of the coalescing unit merging images from 0.5 to
6 megapixels with different numbers of image slices. The table
also gives the maximum operating frequency possible for the
target device Xilinx Virtex 6 XC6VLX240T. By using the
maximum frequency fmax the throughput of the coalescing
unit can be calculated using equation 3. The scalability of
the FPGA utilization for different number of concurrently
processed image slices is shown in Fig. 8. The utilization
of the coalescing unit scales approximately linear with the

Table III
RESOURCE UTILIZATION FOR COALESCING UNIT PROCESSING AN IMAGE

OF 2048× 1024 PIXELS
TARGET DEVICE: XILINX VIRTEX 6 XC6VLX240T SPEEDGRADE -2

image slices Registers LUTs BRAMs
fmax

[MHz]

1024× 512 pixels
2 1961 2729 7 200.18
4 3128 4675 12 200.18
8 5439 8599 21 182.81
16 10060 16531 45 170.99

2048× 1024 pixels
2 3539 4908 12 199.26
4 5743 8435 22 199.26
8 10126 15538 48 172.71
16 18899 30178 95 172.20

3072× 2048 pixels
2 6141 8799 23 173.40
4 10403 15404 49 171.50
8 18910 28255 101 171.00
16 35919 54723 203 170.51
32 69923 104799 410 143.122

of 301k of 150k of 416

number of processed image slices for the used image sizes.
Only the operating frequency decreases, the more the FPGA
device is utilized. This also influences the throughput of the
coalescing unit, which is depicted in Fig. 9. This figure shows
the utilization of the target FPGA device for different image
sizes and different number of processed image slices. In order
to show the utilization the usage of block RAM was used
since it is the most critical resource in this architecture. The
utilization scales with processing throughput approximately
linear in the examined area. Furthermore it is possible to merge
up to 32 concurrently processed image slices in real-time and
reach a processing throughput of more than 4.5 GPixels per
second using the target FPGA.

T = fmax × p (3)

In Table IV the performance of the implementation of the
proposed architecture for performing connected component
labeling is compared to other hardware implementations. It is
obvious that the implementation of the proposed architecture
is superior in terms of processing throughput due to the high

1024× 512 pixels 2048× 1024 pixels 3072× 2048 pixels

0

20

40

60

80

100

F
P
G
A

U
ti
li
za
ti
on

[%
]

0 5 10 15 20 25 30

Number of image slices

Registers

LUTs

BRAMs

0

20

40

60

80

100

F
P
G
A

U
ti
li
za
ti
on

[%
]

0 5 10 15 20 25 30

Number of image slices

Registers

LUTs

BRAMs

0

20

40

60

80

100

F
P
G
A

U
ti
li
za
ti
on

[%
]

0 5 10 15 20 25 30

Number of image slices

Registers

LUTs

BRAMs

Fig. 8. FPGA resource utilization for coalescing unit for different image sizes.

0

20

40

60

80

100

F
P
G
A

U
ti
li
za
ti
o
n
[%

]

0 1 2 3 4 5

Throughput T [GPixels/s]

0.5 MPixels (1024 x 512)

2.1 MPixels (2048 x 1024)

6.3 MPixels (3072 x 2048)

Fig. 9. Throughput of the coalescing unit for different image sizes.

Table IV
COMPARISON WITH OTHER HARDWARE IMPLEMENTATIONS.

Parallelism
[Pixels

cycle
]

fmax

[MHz]
Technology

Throughput
[GPixels

s
]

Bailey et al.
[2], [7]

1 N/A Xilinx
Spartan-II

N/A

Ma et al.[3] 1 40.63 Xilinx
Virtex II

0.04

Kumar et
al.[5]

2
4
6

100 Xilinx
Virtex 5

0.2
0.4
0.6

Lin et al. [8] 4 100 0.35 um 0.4

This work

4
8
16
32

171.5
171.0
170.5
143.0

Xilinx
Virtex 6

0.7
1.3
2.7
4.5

degree of parallelism of 32 pixels per cycle and more possible
by using the proposed algorithm.

V. CONCLUSION

In classical connected component labeling (CCL) algo-
rithms the memory requirement is at least that of a full image.
The proposed parallel CCL algorithm and architecture reduce
the amount of memory significantly and enable parallelism at

the same time. Even when compared to sliced parallel single
pass CCL algorithms and architectures, the amount of memory
required is reduced by a factor of 100 or more for typical
image sizes. This enables memory-efficient CCL processing
of images containing the maximum number of regions in
the worst case. The processing throughput of the proposed
architecture can be increased compared to other architectures
by the number of concurrently processed image slices and can
reach on a Xilinx Virtex 6 240T up to 4.5 GPixels per second.
Compared to other architectures which process sliced images
the proposed architecture is suited for stream processing which
is a necessity for real-time image and video processing.

ACKNOWLEDGEMENTS

The authors would like to thank the German Research
Foundation (DFG) for the financial support. This work has
been carried out within the research project Si 586 7/1 which
belongs to the priority program DFG-SPP 1423 “Prozess-
Spray”.

REFERENCES

[1] A. Rosenfeld and J. L. Pfaltz, “Sequential operations in digital picture
processing,” J. ACM, vol. 13, pp. 471–494, October 1966.

[2] D. Bailey and C. Johnston, “Single pass connected components analysis,”
in Proceedings of Image and Vision Computing New Zealand 2007,
december 2007, pp. 282–287.

[3] N. Ma, D. Bailey, and C. Johnston, “Optimised single pass connected
components analysis,” in ICECE Technology, 2008. FPT 2008. Interna-
tional Conference on, dec. 2008, pp. 185 –192.

[4] D. Bailey, C. Johnston, and N. Ma, “Connected components analysis of
streamed images,” in Field Programmable Logic and Applications, 2008.
FPL 2008. International Conference on, sept. 2008, pp. 679 –682.

[5] V. Kumar, K. Irick, A. Al Maashri, and N. Vijaykrishnan, “A scalable
bandwidth aware architecture for connected component labeling,” in VLSI
(ISVLSI), 2010 IEEE Computer Society Annual Symposium on, july 2010,
pp. 116 –121.

[6] V. S. Kumar, K. Irick, A. A. Maashri, and V. Narayanan, “A scalable
bandwidth-aware architecture for connected component labeling,” in VLSI
2010 Annual Symposium, ser. Lecture Notes in Electrical Engineering,
N. Voros, A. Mukherjee, N. Sklavos, K. Masselos, and M. Huebner, Eds.
Springer Netherlands, 2011, vol. 105, pp. 133–149.

[7] C. Johnston and D. Bailey, “Fpga implementation of a single pass
connected components algorithm,” in Electronic Design, Test and Ap-
plications, 2008. DELTA 2008. 4th IEEE International Symposium on,
jan. 2008, pp. 228 –231.

[8] C.-Y. Lin, S.-Y. Li, and T.-H. Tsai, “A scalable parallel hardware
architecture for connected component labeling,” in Image Processing
(ICIP), 2010 17th IEEE International Conference on, sept. 2010, pp.
3753 –3756.

