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Abstract In this paper, a memory efficient architecture
for single-pass connected components analysis suited for
high throughput embedded image processing systems is
proposed which achieves a speedup by partitioning the
image into slices. Although global data dependencies of
image segments spanning several image slices exist, a
temporal and spatial local algorithm is proposed, to-
gether with a suited FPGA hardware architecture pro-
cessing pixel data at low latency. The low latency of
the proposed architecture allows reuse of labels associ-
ated with the image objects. This reduces the amount
of memory by a factor of more than 5 in the consid-
ered implementations which is a significant contribution
since memory is a critical resource in embedded image
processing on FPGAs. Therefore, a significantly higher
bandwidth of pixel data can be processed with this ar-
chitecture compared to the state-of-the-art architectures
using the same amount of hardware resources.

1 Introduction

Connected component analysis (CCA) is a major step
in many image processing systems. It has the task of
detecting pixels forming an image component and ex-
tracting its feature vectors (FV) after the image has
been acquired and converted from either a colour or a
greyscale representation to a binary image using a suit-
able segmentation method. There are several variants of
CCA from multi-pass variants to two-pass variants [13]
to modern single-pass algorithms. The class of single-
pass CCA algorithms has the major advantage of being
able to process the image without the need of storing in-
termediate labels in a memory matrix of the size of the
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image. Most modern CCA algorithms apply the union-
find algorithm and use a forest data structure in order
to keep a record of and merge different image segments.
Union-find algorithms have been studied and evaluated
extensively [15, 6, 5] and are also a foundation for the
proposed algorithm and architecture.

The recent need for systems capable of processing
pixel streams of high resolution images with high frame
rates requires processing several pixels in parallel in order
to achieve the desired throughputs. These high through-
puts can be achieved in dedicated hardware architec-
tures for CCA designed for field-programmable gate ar-
rays (FPGAs) processing several pixels simultaneously
to enable the extraction of feature vectors such as the
size, area, etc. of image components without the need of
storing the complete image in a memory.

There are several hardware architectures for CCA
which can process up to one pixel per clock cycle [7, 4, 12,
3]. For these architectures the processing throughput is
limited by the maximum clock frequency on the FPGA.
Architectures capable of processing a higher throughput
apply different acceleration techniques ranging from pro-
cessing of a run-length encoded image stream [16, 2, 17]
to parallel processing of pixels from different image rows
[11] to processing images in parallel using slice processing
[10, 8]. These techniques increase memory requirements
and require additional processing at the end of the frame,
adversely affecting latency.

The hardware architecture for parallel connected com-
ponent analysis proposed in this paper is based on the ar-
chitecture in [12] where one image pixel is processed per
clock cycle with low memory cost and low latency, and
[8] where several image pixels are processed in parallel
by dividing the image into vertical slices and processing
the slices in parallel. In [8] components spanning multi-
ple slices are merged at the cost of a higher memory re-
quirements and increased latency. The goal is to process
several pixels in parallel in order to achieve a maximum
throughput for processing a pixel stream. Therefore, the
image is processed using an extended image processing
unit similar to [4] for each image slice to detect the rela-
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tionship to neighbour slices which are saved during pro-
cessing of the image and then later evaluated at the end
of the image. A large memory is required to keep track
of the relations between segments spanning more than
one image slice. This limits a higher processing through-
put even on state-of-the-art FPGAs because of a lack of
memory resources. Furthermore, the processing latency
for border segments is increased because they are pro-
cessed at the end of the image.

In Figure 1 the proposed broad architecture for par-
allel CCA is depicted. The proposed FPGA architecture
gains a high-throughput by partitioning the image into
several image slices which are processed in parallel. The
image distribution unit divides the input pixel stream
to p pixel streams (one per image slice) which are pro-
vided to the slice processing units simultaneously and
in raster scan order for each slice. The slice processing
units (SPUs) extract feature vectors of their respective
image slice and detect connected components that span
multiple image slices. In addition to the extracted fea-
ture vectors and the associated global labels, the SPUs
send instructions on which global labels belong to the
same connected component to the coalescing unit (CU).
These instructions are inter slice mergers (ISMs) and
slice mergers (SMs) containing the global label informa-
tion, which are introduced in Section 2.

This paper is an extended, more detailed version of
the conference publication [9] providing more informa-
tion on the proposed algorithm and the results. In the fol-
lowing section, the parallel CCA algorithm is described.
The high-throughput hardware architecture is presented
in Section 3. This is followed by an analysis of the algo-
rithm and the architecture and the presentation of the
experimental results in Section 4.

2 Algorithm for parallel CCA

In this section the proposed algorithm for parallel con-
nected components analysis is explained on an abstract
level. In order to process several image pixels simultane-
ously in parallel, the image is divided into several ver-
tical image slices, with each slice processed in parallel
by separate pixel processing instances. Each image slice
is treated as a separate image, while an additional pro-
cessing instance collects information on the relationship
between connected components spanning multiple im-
age slices. If an image segment does not touch one of
the slice borders, no further processing is necessary after
the image segment’s end is detected. This kind of seg-
ment is referred to as a local image component, because
it exists only within one image slice. Whenever an image
segment touches one of the slice borders, that connected
component may span multiple image slices. In this case
further processing is necessary to merge the feature vec-
tors associated with those from the adjacent segments.
The relationship between the local image segments and
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Fig. 1 Overview of a hardware architecture for parallel
CCA.

global image components is represented in a graph re-
ferred to as the global segment graph (GSG) which has
to be composed during processing of the image slices.
It shows the relation between global image components,
global image segments and local image segments as a
forest structure, in which each global image component,
each global image segment and each local image segment
is represented by a vertex pointing either to a parent ver-
tex or to itself, indicating that it is the root. Since the
vertical image slices are processed in raster scan order, it
is possible for different global image segments to first be
recognised as individual global image components, and
then joined later. In this case their vertices are associ-
ated with the same connected component in I, hence
their tree structures in the GSG have to be joined.

Figure 2 shows an example of an image partitioned
into two image slices and its GSG. Since all of the image
segments in image slice 1 and image slice 2 in Figure 2 are
part of a single image component, all of the local image
segments are part of a single global image component.

Due to the raster scan order, two global image seg-
ments are recognised at first, which are combined further
down in the image into one global image component. The
union-find algorithm is used to combine the vertices of
several global image segments in a tree structure. The
two basic operations for this, union and find, can be ap-
plied to the connected components problem as follows:
when two global segments are merged, the find operation
is used to determine the root vertices of both global im-
age segments. After having found the roots of both tree
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Fig. 2 Global segment graph for an example image separated
to several image slices.

structures, one is merged with the other using the union
operation. Additionally, path compression [14] is applied
in order to minimise the cost of find operations.

Whenever an object pixel at the border of an image
slice is adjacent to an object pixel (8-neighbourhood) of
its neighbour slice, an inter slice merger (ISM) is detected
which connects the two associated local labels. An ISM
of two segments which do not yet have a global label re-
quires the creation of a new global vertex to represent
the new global image segment. Both local segments are
then linked to the new global segment. If one of the lo-
cal segments already has a global label, the local image
segment without a global label is connected to the global
vertex of the neighbouring image segment. If both local
image segments already have global labels with different
roots, it is necessary to merge these. These three differ-
ent types of ISM operations are called ISM LL, ISM GL
and ISM GG. There is a fourth type of global merger,
which occurs when two local segments merge within an
image slice that have different global labels. These global
labels belong to the same global image segment, there-
fore, their root vertices in the GSG have to be unified.
A merger operation of this type is referred to as a slice
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Fig. 3 Pixel contact types between neighbour slices

merger (SM). The image in Figure 2 illustrates these four
different merger types.

Due to 8-neighbour connectivity, ISMs can occur ei-
ther horizontally or diagonally. These possible combina-
tions are shown in Figure 3 together with the associated
global segment graphs in Figure 4. The horizontal ISMs
shown in Figure 3.I. are processed in raster scan order
in parallel, and all the rightmost pixels of the currently
processed image row at the same time. The local image
segments are, therefore, part of ISMs which are detected
at the same time and signalled to the neighbour slices.
For this reason the vertices of the local image segments
are only children of the global vertices involved in their
ISMs. Global vertices of simultaneous ISMs belonging to
the same global image segment have to be merged af-
terwards. The connections shown in Figure 3.I results in
a tree structure where the local vertices are children of
their associated global vertices and the global vertices are
also connected to each other as shown in Figure 4.I. For
diagonal connections further two cases have to be distin-
guished for diagonal ISMs: either the rightmost pixel of
the current row has to be merged to the leftmost pixel
of previous row of the right neighbour slice, or the left-
most pixel of the current row has to be merged to the
rightmost pixel of the previous row of the left neighbour
slice. These two possibilities are illustrated in Figure 3.II
and 3.III. For a type II diagonal ISM the procedure is
the same as in type I. In a type III diagonal merger, the
local vertices are connected to the associated global ver-
tices during the ISM at the start of the row. The global
vertices are then later connected via an SM merger. The
GSG for the example in Figure 3.III is divided into two
steps: in Figure 4.III first the graph after the ISM has
been carried out is shown, where the local vertices are
connected to their global vertices. In the second graph
the connection among the vertices after the SM mergers
can be seen.

The global segment graph (GSG) keeps a record of
the relation between the individual image segments in
different image slices, but does not keep a record when
local and global image segments are finished. A global
image segment spanning several slices is finished when
all of its associated local image segments are finished.
In order to keep track of this, an additional counter,
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ure 3.

referred to as child counter (CC), is assigned to each
global vertex in the GSG to count the number of direct
children vertices.

The CC of a global vertex is updated on every global
merger, either ISM or SM. For the different merger types
the CCs have to be changed as follows: for an ISM LL
merger the CC of the newly created global vertex has
to be initialised with two, because two local image seg-
ments are pointing to it. It has to be incremented for
an ISM GL merger, because another global image seg-
ment is pointing to it. The two involved global vertices
have to be unified at the occurrence of an ISM GG. The
root of one global vertex becomes a child of the other
one. Therefore the child counter of the new root has to
be incremented. For an SM merger, two local vertices
are merged, which are pointing to different global ver-
tices. In this merger, two sub-segments of one local im-

age segment are merged. Therefore, the root vertices of
the associated global vertices have to be unified and one
of the global vertices loses a local vertex, i.e. its CC is
decremented by one.

When a local image segment is finished, the CC of its
parent’s vertex is decremented. If it reaches zero, all of its
constituent segments are completed and no more image
segments point to that vertex. Its feature vector is, there-
fore, combined with the feature vector associated with its
parent vertex. As a result, this global vertex and its fea-
ture vector is no longer required, and can be removed,
and the CC of its parent has to be decremented. This
process is repeated until the last local image segment
of the global image component is finished, which results
in the root vertex CC becoming zero. At this point, all
local image segments of the global image segment are fin-
ished, and therefore, the global image segment is finished
as well.

To outline the functionality of this algorithm, the pro-
cedure of processing two image slices and merging their
local image segments on the fly is explained in the fol-
lowing. This is illustrated in the example image in Figure
5 which shows a spiral pattern spanning over two image
slices. The first five global mergers are ISM LL mergers,
with each global vertex being pointed to by two local
vertices. Figure 6 shows the GSG of the spiral image in
Figure 5 starting from position P1. At that position each
global vertex has two direct children. This is reflected in
their child counters. At position P2, the image segment
labelled with local label L15 is detected as ended. There-
fore, its FV is added to its global vertex and the CC of
G5 is decremented. Afterwards, at position P3, an ISM
merger of image segments pointing to global vertex G4
and global vertex G5 is detected. This is reflected in an
edge from G5 to G4 in the global segment graph. G5 is
now a direct child of G4, so the CC of G4 has to be in-
cremented. The next change in the global segment graph
occurs at position P4, where the local image segment la-
belled L25 ends resulting in decrementing its parent’s
vertex’s CC. This has the effect that now the CC of G5
is zero and the vertex feature vector is now merged into
its parent. Therefore, G5 is no longer needed and can be
released, the CC of its parent vertex is decremented. The
following steps are described in Figure 6 until position P8
where all local image segments of the spiral image have
ended. At this point, the feature vector for the complete
spiral is associated with the root global vertex G1. With
the end of the last image segment L11, the CC of global
vertex G1 decrements to zero indicating that the global
image component is finished.

3 High-throughput architecture for parallel
connected components analysis

The proposed hardware architecture for connected com-
ponent analysis gains its speedup through parallel pro-
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cessing of the pixel data stream. This is achieved by par-
titioning the received image into image slices and dis-
tributing them to several processing units. For the hard-
ware architecture, this means that several image pixels
are processed simultaneously in one clock cycle. In or-
der to keep track of the relations between the image
segments, each slice processing unit collects information
about the relationship of the border pixels to the corre-
sponding pixels of neighbouring image slices. This infor-
mation is forwarded, together with the feature vector of
each image segment, to the coalescing unit, where it is
analysed and the feature vectors of adjacent image seg-
ments are merged to form the ultimate feature vector of
the entire connected component. The proposed architec-
ture is an advancement of the architectures described in
[12] and [8]. While the architecture proposed in [12] is
memory efficient, due to its scheme for reusing memory
resources, and has a low latency for processing the im-
age pixel data, it can only process up to one pixel per
clock cycle in the best case. In order to achieve a higher
processing bandwidth, the architecture in [8] follows the
idea of processing several pixels per clock cycle and col-
lecting information on all image segments spanning over
several image slices which are evaluated at the end of the
image. Although this approach offers a large processing
bandwidth, a large memory is potentially required to
store information from all image segments until they are
evaluated at the end of the image. The evaluation of the
image segments at the end of the frame also adds to the
processing latency.

The proposed architecture introduces an on-the-fly
coalescing scheme for image slices processed in parallel,
which has two major advantages over the architectures
proposed in [12] and [8]. When an image segment span-
ning several image slices is finished, all feature vectors of
the individual image segments it consists of are already

merged. Therefore, all the memory required for storing
the information collected on the image segments can be
freed and reused in order to store information on sub-
sequent image segments appearing in the pixel stream.
This scheme to reuse memory resources contributes sig-
nificantly to the reduction in memory resources in the
proposed architecture and to the reduction of processing
latency which leads to high processing bandwidth, low
memory requirement and low latency. Therefore, the per-
formance of the proposed architecture can be increased
significantly for the same amount of FPGA resources
compared to [12] and [8].

In Figure 1 the architecture is shown as a block di-
agram consisting of several entities, which are described
in more detail in the following paragraphs.

3.1 Slice Processing Unit

The slice processing unit (SPU) performs CCA for the
pixels of its image slice. The architecture depicted in
Figure 7 is an advancement on the architecture from
[12]. While the general principle for processing the pixel
stream is retained, major changes are necessary in order
to make the immediate merging of image segments span-
ning several image slices possible. In order to represent
the global and local vertices and their properties, the la-
bel selection needs two different label types, namely: lo-
cal labels representing local image segments and global
labels representing global image components consisting
of several local image segments. After delaying the la-
bels from the neighbourhood context block for one row
in a row buffer, the labels reach the merger table (MT),
which has the task of keeping a record of mergers among
local image segments. The link table (LT) stores the con-
nections from local labels to global labels, hence repre-
senting the edges from local vertices to global vertices in
the GSG. The feature vectors associated with the local
image segments are stored in the data table (DT).

A second fundamental change is the usage of an ad-
vanced scheme for memory reuse, which is a key fea-
ture for saving memory and, therefore, results in a hard-
ware architecture requiring less resources. The scheme
for reusing memory resources is efficient because one en-
try in the tables is required for each image segment in-
dexed by the local label of the image segment, exploiting

the fact that a maximum number of
Wimage

2 image seg-
ments have to be maintained at one time when travers-
ing the image in raster scan manner, where Wimage is
the image width. Hence, the entries in these tables can
be reused when an image segment is finished. The idea
of this scheme is that, when a local label has been as-
signed to an image segment, the image segment keeps
this label until it is finished; this is followed by the read-
out of the corresponding feature vector, so the memory
resource can be invalidated and reused. This functional-
ity is reflected by a changed data table and a new label
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management unit unit (LM) in the slice processing unit
architecture depicted in Figure 7. If the local labels in
the current pixel’s neighbourhood context are all back-
ground, a new label is requested from the label manage-
ment unit. Due to the reuse scheme, it cannot be ensured
that the labels are in numerical order. The property de-
fined in [3] to always assign the minimum label in the
neighbourhood to the current pixel can, therefore, result
in wrong associations for mergers among image segments
because a single look-up in the merger table does not
necessarily yield the root label. This is illustrated in the
example image in Figure 8. For this reason the concept of
using augmented labels is introduced. The label is aug-
mented with the row number it is generated in. The com-

L4

L3 L2 L1

L1 L3 L4

L2

Fig. 8 Image in which augmented labels are required.

plete augmented label is interpreted for merger decisions,
while only the label is used for accessing the tables. This
ensures that the augmented label created earlier during
processing is always smaller leading to correct behaviour
[3] when a merger occurs.

In order to reuse a label two cases can apply: if an
image segment is finished its local label can be reused
immediately. The second case is when a merger occurs
between two local labels. The invalidated label may still
be in the row buffer, which would be converted to the
correct label by the merger table when processing the
next image row. Therefore, it is necessary to wait until
the following row before reusing the label.

Each image segment has a local label which is used
as an index for the memory resources within the SPU. If
the image segment spans several image slices it also has
a global label referencing the memory resources in the
coalescing unit. Each SPU has a link table to translate
from the label of the local image segment to the global
label in the GSG. The fact that every image pixel has
both a global and a local label is also reflected in the
label selection unit, as well. The local slice labels are se-
lected using the scheme introduced in [12] by analysing
the pixel neighbourhood and choosing the minimum aug-
mented label as a new local label for the current pixel. All
global labels in the pixel neighbourhood are considered
to determine which global label to assign to the current
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pixel. If no global label is in this neighbourhood, the cur-
rent pixel’s global label is set to zero. If one label is in
the neighbourhood, it is copied to the current pixel. The
presence of two different global labels requires a global
merger which is significantly more complex than the case
of merging local labels, because the merger type as well
as the labels of the pixels from the neighbouring slices
have to be considered. The type of the global merger and
its global labels are forwarded to the the coalescing unit
by adding it to the merger queue (MQ). Additionally the
SPU’s link table is updated to the new global label. The
long combinational path of the decision tree for deter-
mining the current pixel’s global label is optimised by
introducing a pipeline stage. This is allowed due to the
fact that the following pixel is either of the same image
segment or of background.

In order to store the feature vectors of each image
segment, the data table has one entry indexed by the
augmented label. Due to the label reuse principle, the
labels for the image segments and hence the data table
entries, are reused after an image segment is finished.
The end of an image segment is recognised using the
following property: when processing an image row, all
data table entries of image segments which pixels are
contained in the currently processed image row are up-
dated. Therefore, a data table entry which was updated
in the previous image row, and not updated in the cur-
rent image row, is detected to contain a feature vector of
a finished segment which can be read out. The data table
entry can afterwards be reused for storing feature vectors
of image segments appearing further down in the image.
This behaviour is realised by adding two additional con-
trol flags to each data table entry. A valid flag is used to
determine whether a data table entry is valid. Using this
flag, entries are invalidated after two image segments are
merged to a single one or after readout. In order to de-
termine whether an image segment is finished, an active
tag is added to a data table entry. Whenever new data
is written to the data table, this tag is updated to indi-
cate that the data table entry was updated in the current
row. The tag is changed at the end of each image row. In
this way data table entries in which the active flag has
not been updated during the processing of the current
row, contain feature vectors of finished image segments.
These are detected and read out while processing the
next image row by checking the active tag and valid flag
of all data table entries in ascending order. If an entry
is found to be valid and its active tag indicates that the
last update was two rows before, it contains a finished
image segment. After readout, the data table entry can
immediately be reused for storing feature vectors of fur-
ther image segments. For this reason, the local label to
be reused is forwarded to the label management unit.

For the implementation of the data table using the
Block RAM primitives available on state-of-the-art FP-
GAs, it is crucial to analyse the required number of read
and write ports necessary. When considering a labelling
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Fig. 9 Port access to data table Block-RAM.

process, several read and write operations have to be
performed when processing a pixel, which has several
different labels in its pixel neighbourhood. For mergers,
two read operations and one write operation are required
when using a naive approach, where every data table en-
try is read whenever it is required for processing. How-
ever, one can exploit the property that, if the currently
processed image pixel is a foreground pixel, its neighbour
pixel will either belong to the same image segment or be
a background pixel. By caching the feature vector of the
current image segment, only a single read of the data
table is required for a merger, and a single write on the
background pixel at the end of a sequence is required.
Figure 9 shows how to cover different patterns such as
single mergers or a combination of several mergers. Using
this scheduling scheme, only one memory port is required
to access the data table for reading and writing entries
during processing [3]. The second memory port is used
to read out and invalidate feature vectors of finished im-
age segments. This makes it possible to use only a single
Block RAM in true dual port mode [1], compared to the
naive approach, where at least three Block RAMs are
required.

3.2 Coalescing unit

The coalescing unit (CU) has the tasks of establishing
the relationship between local image segments identified
by the individual slice processing units (SPUs), and de-
tecting the end of the resulting global image segments.
These two tasks are executed in parallel to the pixel pro-
cessing taking place in the SPUs and has the advantage
that the FVs of the global image segments can be com-
posed of the FVs of the local image segments on the fly,
which enables the possibility of reusing the global mem-
ory resources after each global image segment is com-
pleted.

An SPU requires up to an addition of an extra 20%
clock cycles (in average) at the end of the row for pro-
cessing worst cases images [3]. The CU requires multiple
clock cycles to process each ISM, SM or FO issued by the
SPUs, therefore, operates on an instruction level rather
than on a pixel level. Depending on the number of image
slices, the number of ISMs, SMs and FOs is significantly
lower than the number of pixels per image slice. There-
fore, for correct on-the-fly processing, a single CU must
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use fewer clock cycles to process ISMs, SMs or FOs than
the SPUs require to process the pixel data of their image
slices. This is analysed in detail in Section 4 and an upper
bound for the number of image slices is determined.

The architecture of the CU with its sub-entities is de-
picted in Figure 10. The functionality and the structure
of each sub-entity is described in detail in the following
paragraphs.

The information collected on global mergers and FVs
of finished segments are en-queued in FIFOs when enter-
ing the CU. For each connected SPU processing one im-
age slice, two FIFOs are required: the merger queue and
the finished object queue. While the merger queue stores
the type of and the labels involved in the mergers, the
finished object queue stores feature vectors of local image
segments which the SPUs have detected to be finished.
The global merger table (GMT) stores the edges between
global vertices of the global segment graph (GSG). Addi-
tionally, the find operation and the path compression are
integrated into the GMT, having the feature that when-
ever the root label of any global label is requested, the
tree structure mapped to the GMT memory is collapsed,
so that subsequent find operations benefit from this. The
FVs of the global image segments, together with the as-
sociated child counters, are stored in the global data ta-
ble (GDT). Each global label represents one entry in each
of the GMT and GDT. The global label management
unit (GLM) is responsible for providing global labels to
the SPUs instantaneously, where each global label repre-
sents one entry in the GMT and one entry in the GDT.
The GLM has one counter for providing global labels and
one global label queue for storing recycled global labels,
for each connected SPU. The counters are incremented
in ascending order as long as the maximum number of
global labels is not exceeded. Whenever a global label of
a finished global image segment is passed to the GLM, it
is en-queued in one of the global label queues. In order
to minimise the required queue depth, the global labels
on the global label queues are always prioritised. As a
central controlling instance, the coalescing control unit
has the responsibility of providing the communication
between the different sub-entities, which includes pro-
cessing of global merger and detection of finished local
image segments. Mergers are processed sequentially due
to limited number of memory ports of GDT and GMT
and their data dependencies. The task of merger han-
dling is hereby perceived by identification of the merger
type and update of the GMT and GDT according to
the description in Section 2. At the end of a global im-
age, which is recognised by a child counter of zero in the
GDT entry, the FV of the finished global image segment,
is passed on to the output, so the used memory entries
are no longer required and can be used for processing the
next global image segment. In order to reuse its global
label, it is passed to the GLM, which is now able to pro-
vide it to the SPUs for processing the next global image
segment.

Coalescing
Control

Global
Merger
Queue

Finished
Object

FV
Queue

Global
Merger
Table

Global
Data
Table

Finished
Global
Objects

......
Global
Label

Management

...

Coalescing Unit

Fig. 10 Architecture of the coalescing unit.

4 Experimental results and discussion

To analyse the performance and to find out whether
real-time requirements can be met, it is crucial to de-
termine the maximum number of mergers which can oc-
cur in the worst case. The CU carries out three differ-
ent types of operations: inter slice mergers (ISMs), slice
mergers (SMs) and finished local image segments (FO).
The number of cycles for performing the maximum pos-
sible merger operations, depends on the image width
Wimage and the number of image slices p processed in
parallel. Due to this relation each image slice has a width

of Wslice =
Wimage

p . For analysis of the maximum num-

ber of mergers, the properties of the individual operation
types can be used. ISM is the only merger type which can
generate global labels, SM has the ability to merge global
labels and FO has the ability to invalidate global labels.
Since an SM merger operation needs different global la-
bels at most Wslice

2 SM mergers can be carried out in one

row of an image slice. This requires at least Wslice

2 global
labels. Therefore it is required that these global labels
have been generated by ISM LL operations in the rows
before and not yet been merged to other global labels.
This scenario can only occur every Wslice image rows,
because at least Wslice

2 ISM LLs are necessary to gener-
ate the required number of global labels. For this reason
the worst case image in terms of processing time has the
following properties:

1. Maximum number of global labels are generated.
2. As soon as Wslice

2 global labels are generated via ISM
operations, they are merged using SM operations in
the following row.

3. All local image segments end after the SM operations,
which leads to FO operations in the following row.

4. The properties given in 1 through 3 repeat periodi-
cally every Wslice rows in the image.
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Table 1 Maximum number of image slices for different image
slice width.

slice width pmax

96 11
128 16
160 19
192 23
224 26
256 32

An example for such a worst case image is given in Figure
12 showing the properties stated in 1 through 3 as dark
pixels and the repetition as light pixels.

In order to be able to process an image stream in
real-time, it is necessary to check whether the maxi-
mum number of merger operations for all processed im-
age slices can be processed successfully within the num-
ber of clock cycles available. Due to a large tree struc-
ture in the global merger table in coalescing unit, which
changes significantly with every merger and every fin-
ished image segment, an analytical exploration of the
worst case tree and the number of steps for processing it
for any possible image, is out of the scope of this work.
Yet, to be sure that high throughput can be met, im-
ages according to the previously defined properties were
generated and simulated with the CCA hardware archi-
tecture to determine the maximum number of slice pro-
cessing units that can be processed by the coalescing in
the worst case. The results of these simulations in Table
1 show the maximum number of image slices pmax which
can be processed by the coalescing unit for image slices
of different width.

The hardware architecture for parallel CCA intro-
duced in Section 3 was described in VHDL (VHSIC Hard-
ware Description Language) and implemented for Xilinx
Virtex 6 VLX240T-2 (speedgrade -2) FPGA devices.

The FPGA resources required for the extraction of
the bounding box features are shown in Table 2 for dif-
ferent image sizes and for varying number of image slices.
The diagram in Figure 11 depicts the number of Regis-
ters, LUTs and BRAMs necessary for the CCA architec-
ture. The FPGA resources grow linearly with the number
of image slices. In addition, the maximum frequency of
the CCA architecture remains almost constant over the
whole range of image sizes and slices. This provides good
scalability with processing throughput. For the analysis
of the maximum throughput, the overhead of stack pro-
cessing must be considered as well, which depends on the
maximum number of mergers in an image row. These can
be up to Wslice

2 cycles for a single row, but cannot exceed
Wslice

4 cycles in average time for the reason that there
cannot be any merger in the row followed by a row hav-
ing the maximum number of mergers. The throughput
therefore is T = fmax × p× 0.8.

A comparison of the memory requirements for the
proposed architecture and [8] is shown in Figure 13. The
size of coalescing unit can be reduced by a factor of 42.
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Fig. 11 Diagram of FPGA resource requirement for different
image sizes.

Fig. 12 Worst case image with maximum number of global
mergers.

This has a huge impact on the complete architecture,
so that the memory requirements for complete architec-
ture can be reduced by a factor of more than 5. The
increase in LUT requirement results from the fact that
the finished object queues and merger queues, realised
as distributed RAM, are included in the coalescing unit,
rather than in slice processing unit in [8] and is therefore
not important for a direct comparison.

Table 3 gives a comparison of the proposed architec-
ture for connected component analysis to other hardware
architectures. This shows that processing throughput is
significantly higher compared to [3, 7, 12, 17, 10]. Com-
pared to [8] the achievable throughput is similar, while
the proposed architectures has a significantly reduced
hardware requirement on the FPGA.

5 Conclusion

The proposed parallel connected components analysis
(CCA) algorithm and architecture allow the extraction
of properties of image objects with a high throughput at
low FPGA resource requirements. The high throughput
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Table 2 Resource requirements for parallel CCA architecture for different image sizes
Target Device: Xilinx Virtex 6 XC6VLX240T speedgrade -2

slices pmax Registers LUTs BRAMs fmax [MHz] T [GPixels/s]

1024× 512 pixels
10 10447 25187 42 136.4 1.1

2048× 1024 pixels
16 17376 42792 74 137.9 1.7

3072× 2048 pixels
19 22452 59305 90 137.3 2.0

4096× 3072 pixels
21 25177 70171 99 132.6 2.2

8192× 6144 pixels
32 39680 106897 153 125.8 3.2

of 301k of 150k of 416

Table 3 Comparison of throughput with other hardware implementations.

Parallelism [Pixels
cycle

] fmax [MHz] Technology Max T [GPixels
s

]

[3, 7] 1 N/A Spartan-II N/A
[12] 1 40.63 Virtex II 0.04
[10] 6 100 Virtex 5 0.6
[11] 4 100 0.35 um 0.4
[8] 32 138.8 Virtex 6 3.5
[17] 1 95.7 Virtex II 0.1

This work 32 126.8 Virtex 6 3.2
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Fig. 13 Comparison the proposed architecture and [8] for
image size 2048x1024.

is achieved by image partitioning results from an on-the-
fly coalescing principle for parallel processed image parti-
tions, and an advanced scheme for memory reuse, reduc-
ing memory requirements and processing latency signifi-
cantly. The FPGA resources necessary for the proposed
coalescing unit, which is a key component for parallel
CCA, could be reduced by a factor of up to 42 compared
to a previously proposed architecture. This reduces the
memory requirements of the complete CCA architecture
by a factor of more than 5 and enables the realised sys-
tem to perform parallel connected component analysis
with more than 3 GPixels per second at signicantly less
FPGA resources than previous architectures.
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