
1051-8215 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSVT.2015.2450371, IEEE Transactions on Circuits and Systems for Video Technology

Copyright c© 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

1

A Resource-Efficient Hardware Architecture for
Connected Components Analysis

Michael J. Klaiber, Member, IEEE, Donald G. Bailey, Senior Member, IEEE, Yousef O. Baroud and Sven Simon

Abstract—A resource-efficient hardware architecture for con-
nected components analysis (CCA) of streamed video data
is presented which reduces the required hardware resources
especially for larger image widths. On-chip memory requirements
increase with image width and dominate the resources of state-of-
the-art CCA single-pass hardware architectures. A reduction of
on-chip memory resources is essential to meet the ever increasing
image sizes of high-definition and ultra-high-definition standards.
The proposed architecture is resource-efficient due to several
innovations. An improved label recycling scheme detects the
last pixel of an image object in the video stream only a few
clock cycles after its occurrence, allowing the reuse of a label
in the following image row. The coordinated application of
these techniques leads to significant memory savings of more
than two orders in magnitude compared to classical two-pass
connected component labelling architectures. Compared to the
most memory-efficient state-of-the-art single-pass CCA hardware
architecture, 42% or more of on-chip memory resources are
saved depending on the features extracted. Based on these
savings, it is possible to realise an architecture processing video
streams of larger images sizes, or to use a smaller and more
energy-efficient FPGA device, or to increase the functionality
of already existing image processing pipelines in reconfigurable
computing and embedded systems.

Index Terms—Connected components analysis, connected com-
ponents labelling, FPGA, parallel architecture, embedded image
processing

I. INTRODUCTION

CONNECTED components analysis (CCA) is a common
step in image processing, extracting features such as area

or size of arbitrary shaped objects in a binary image. It is
based on connected components labelling (CCL) which creates
a labelled image of the same dimensions as the original image
where all pixels of each connected component are assigned
a unique label. CCA is concerned with deriving the feature
vector for each connected component from the binary input
image I and does not output a labelled image. CCA and
CCL are essential algorithms in computer vision and robotics.
Increasing image resolutions beyond high-definition (HD) in
consumer electronics [2] and frame rates above 100 fps in
high speed imaging [3] require high-performance hardware
architectures. CCA is also used in image segmentation [4] and
for evaluation of video surveillance footage [5]. For connected
components analysis, a number of optimised hardware archi-
tectures and software implementations have been proposed in
the recent past, all with the goal of avoiding the performance
bottlenecks due to memory resources or memory bandwidth
[6]–[13].

For hardware CCA architectures, the required resources are
proportional to the image resolution [14]. This directly affects

the throughput that can be achieved with a certain architec-
ture or process technology. Any reduction in the hardware
resources allows better performance to be achieved with the
same technology or allows a switch to a more energy-efficient
or less expensive hardware device.

A. Dedicated CCA HW architecture vs. SW implementation
A challenge for optimisation of CCA is that most algorithms

are sequential and consist of a combination of compare, lookup
and control operations [11]. A label is assigned to every pixel
depending on its neighbourhood’s labels. This data depen-
dency on the current pixel’s predecessors makes parallelisation
non-trivial, but pipeline processing possible. From these data
dependencies it follows that all operations for the currently
processed pixel have to be finished before the operations on
the subsequent pixel can be started. Therefore, the throughput
depends on the execution time of the individual operations.
Processing the pixel data of an image in real-time as it is
streamed from an image source requires a high-throughput
architecture, especially when a high-speed image sensor is
used. Carrying out CCA on a general purpose processor
(GPP) with a multi-core architecture requires a sequential
execution of the comparison and control operations and several
memory operations per pixel. If the size of data structures
exceeds the size of on-chip memory of the GPP, slow off-
chip memory has to be utilised. The execution time therefore
can be dominated by the latency of the memory operations
[15] limiting the overall throughput of the CCA algorithm
and making the performance strongly dependent on the input
data. Making use of a single-pass CCA algorithm on common
GPP architectures might allow the required data structures
to be stored in on-chip memory and solves the problem of
the memory size. Nevertheless, the available on-chip memory
bandwidth is usually shared among several processing cores
reducing the performance for parallel memory access [16]
which might limit the throughput. General purpose processors
(GPP) are only a good choice for CCA or CCL as long as
power dissipation or processing latency is of minor concern.
Then, a high throughput and good scalability can be achieved
by distributing the workload over a set of several GPP or
GPGPU systems by either distributing parts of the pixel stream
or assigning each image of the stream to a seperate processing
unit. In contrast, when using a dedicated hardware architecture
for CCA, all combinational operations for processing one
pixel of the image can be carried out in a single clock cycle,
some of them in parallel. Several on-chip memory structures
ensure a low latency read and write of image labels at high
bandwidth. This allows a faster processing of a single pixel,

1051-8215 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSVT.2015.2450371, IEEE Transactions on Circuits and Systems for Video Technology

2

leading to a high processing throughput with low latency. The
realisation of a dedicated hardware architecture is possible
either as an application specific integrated circuit (ASIC) or on
a field-programmable gate array (FPGA). Compared to a GPP
architecture, both alternatives are typically superior in terms of
power dissipation, which is especially important in embedded
and mobile applications. Recent reconfigurable logic devices,
FPGAs, consist of lookup tables (LUTs), registers and on-
chip block-RAMs (BRAMs), which can be connected via a
user-programmable connection network [17], [18]. For CCA,
decisions and control operations are mapped to LUTs; for
each operation requiring memory access a dedicated on-chip
BRAM is assigned. The architecture proposed in this paper is
customised for (but not limited to) a realisation as a hardware
architecture on an FPGA. A speed-up is gained by distribut-
ing the computations to several pipeline stages working in
parallel. The memory bandwidth is achieved by distributing
the memory operations over several on-chip BRAMs. A high
throughput by pipeline processing requires each pipeline stage
to have a constant execution time to be able to keep up with
the bandwidth of the image source. The goal of the processing
architecture is to achieve a throughput of one pixel per clock
cycle while maximising the clock frequency. When using
BRAM resources having one clock cycle latency to represent
data structures (e.g. directed graphs) only one lookup per clock
cycle is possible. Recent CCA hardware architectures are close
to the goal of one pixel per clock cycle by maintaining a rooted
tree data structure of tree height of maximum one for labels
to be processed in the current row. Labels already processed
in the current image row may have a bigger tree height. A
tree height of one at the beginning of the next image row is
achieved by compressing the tree structure at the end of each
row [1], [14]. This reduces the number of lookup operations to
one lookup per clock cycle plus a maximum overhead of 18%
at the end of the image row for tree compression, as shown
in Section III-B.

B. Contributions of this paper

The architecture proposed in this paper reduces the resource
requirements for connected components analysis by:

a) Detection and correct processing of not considered
image patterns in previous publications: On the algorithm
level, image patterns (e.g. Figure 10) were not taken into ac-
count in previous hardware architectures [14], [19] resulting in
incorrect labelling. In the proposed architecture these patterns
are detected and handled correctly, i.e. arbitrary image patterns
can be analysed.

b) Using a novel control structure to detect the last pixel
of an image object in the video stream at the earliest possible
point in time: This allows the memory resources used by an
object to be freed earlier.

c) Memory reduction by recycling of labels: On the
architecture level a novel label recycling scheme is introduced.
In combination with the proposed method for detecting the
last pixel of an object, the memory for storing feature vectors
is halved compared to [1] by eliminating redundant data
structures.

d) A novel label translation scheme reducing the number
of label lookups per pixel: The label translation scheme of [1]
is simplified by reducing the number of lookups from two to
one per label.

e) A method for out-of-order labelling for the efficient
recycling of labels: As a consequence of the novel label
recycling, augmented labelling is introduced, a technique to
build consistent rooted tree data structures for components
with out-of-order labels.

f) A reduction of memory resources for the entire archi-
tecture of 42%: The total memory required can be reduced
by a factor of more than 200 compared to the classical
connected component labelling algorithm [20]. Depending on
the extracted feature vector and image size, 42% or more of
memory resources can be saved compared to an optimised
state-of-the-art architecture.

II. RELATED WORK

In classical connected components labelling algorithms an
array L with the dimensions of the image is labelled to asso-
ciate every pixel of an image with its connected component.
The algorithm by Rosenfeld [20] first scans the binary image
once using only local operations to assign an initial label
to each pixel. If global dependencies are detected they are
stored in an equivalence table. A second scan substitutes the
labels assigned to a pixel by a representative label from the
equivalence table [20]. When analysing the memory require-
ments, the labelled image and the equivalence table have to be
taken into account. The sizes of both data structures depend
on the maximum number of labels which is proportional to
the number of pixels in the image. The general algorithm
was improved by applying a union-find data structure [11],
[21], [22] to achieve a quasi-linear scalability for the label
substitution by applying heuristics to balance the height of
the union-find data structure and path compression to avoid
repetitive lookups [23], [24]. Khanna et al. proposed a two-
pass algorithm applying a label reuse scheme to significantly
reduce memory resources for the equivalence table [25]. The
introduction of a single-pass approach eliminated the need to
access each label several times [26], [27].

Execution performance can be improved by optimising the
data access pattern to the memory hierarchy of the used
processor (GPP or GPU) [12], [13], [28]–[31]. In most of
these implementations, sequential data dependencies lead to
sequential execution, and memory bandwidth is the limiting
factor for a faster execution.

Memory resources were identified as a key issue for
the scalability of CCA or CCL hardware architectures. The
amount of memory required depends on the input image.
Therefore, the image leading to the largest amount of memory
(the worst case) has to be considered to cover all possible
input images and is used to compare different architectures
in the following. The principle of the algorithm by Rosenfeld
[20] was adapted in several hardware architectures [29], [32],
[33] to achieve real-time processing. However, the second pass
requires the entire image to be stored. Single-pass connected
components analysis methods eliminated the need to access

1051-8215 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSVT.2015.2450371, IEEE Transactions on Circuits and Systems for Video Technology

3

Component
association

Feature vector
collection

1 bit

Pixel
valid

Pixel
value

1 bit

1 bit

FV
valid

FV
data

WFV bit

Connected components analysis
hardware architecture

Scan control

Label
selection

4×WAL bit WL+WAL +1bit

Neighbourhood
context

Label
management

Row
buffer

WFV bit

WL

bit

WAL bit

WAL bit

2×WL bit

WL

bit

WAL bit

1 bit

Fig. 1. Block diagram of the proposed hardware architecture for connected
component analysis.

each label several times [26], [27] leading to reduced memory
usage. Nakano et al. proposed a single-pass CCA architecture
with the ability to analyse arbitrary connected components
in an image which merge in the k rows above the current
position. This architecture requires k image rows to be stored
for a correct analysis [33]. To process a worst case image
correctly, this single-pass architecture has to store the entire
image. Bailey et al. proposed and implemented a single-pass
hardware architecture which only requires a single row of
labels to be stored to determine the current pixel’s label [1],
[19]. This is achieved by extracting the feature vector for
each object so that the labelled image is not required. For
a worst case image the architecture has to store equivalence
relations for up to dW×H4 e labels in the equivalence table for
an image W pixels wide and H pixels high. A throughput
of up to 1 image pixel per clock cycle can be achieved.
This architecture was optimised by Ma et al. by applying
an aggressive relabelling scheme reusing memory resources
after the last pixel of an image object is detected in the video
stream [1]. This reduces the number of labels at the cost of
additional hardware resources to translate the labels between
the rows. The approach by Ma [1] is the most memory-efficient
hardware architecture found in the literature and is therefore
used in the following sections as a reference for comparisons.

III. HARDWARE ARCHITECTURE

In the following, the nomenclature defined in Table I is
used. The top level block diagram of the proposed architecture
is depicted in Figure 1. It processes a binary input image
I in forward raster scan order, as shown in Figure 2. The
input image I is of size W ×H and consists of object pixels
and background pixels represented by 1 and 0. Two object

TABLE I
NOMENCLATURE USED IN THE FOLLOWING SECTIONS.

Abbreviation Name
DT Data table
E Active tags
FV Feature vector
H Image height
I Source image
L Labelled image
LS Label stack
M Merger table
NL Number of labels
NM Number of merger patterns per row
R Reuse FIFO
RB Row Buffer
S Stack
TT Translation Table
V Valid flags
W Image width
WL Width of a label
WAL Width of an augmented label
WFV Width of a feature vector

pixels p1, p2 are connected if one pixel is in the other pixel’s
8-neighbourhood or a path of neighbouring object pixels
between p1 and p2 exists. A set of object pixels of I is called
a connected component if every pair of pixels in the set is
connected. A subset of connected object pixels of a connected
component is called a component segment. The feature vector
(FV) of a connected component or component segment is an n-
tuple composed by functions of the component’s pattern [34].
Connected components analysis is concerned with deriving the
feature vector for each connected component from the binary
input image I . The hardware architecture associates every
pixel with its connected component by assigning a label and
extracts the component’s feature vector. Label 0 is reserved
for background pixels. A connected component in the image
I is called finished when a label has been assigned to all of
its pixels.

For the selection of the label LX assigned to the current
pixel I[X] at position X , the neighbourhood context provides
the labels at position A, B, C and D labelled LA, LB , LC

and LD as depicted in Figure 2. To simplify discussion, LAD

is introduced to refer to the label LA or label LD since if I[A]
and I[D] are both object pixels they will always have identical
labels: LAD = LA = LD. If a label is used as a Boolean
variable, true indicates an object label, false the background
label.

There are three label patterns with either zero, one or
two different object labels in the neighbourhood context of
an object pixel which are referred to as new label pattern,
label copy pattern and merger pattern. These patterns are
handled by the new label operation, the label copy operation
and the merger operation which change the content of the
data structures in the neighbourhood context, the component
association and the feature vector collection. Two different
object labels in the neighbourhood context where I[X] = 1
obviously belong to the same connected component. For
this case the merger pattern induces a merger operation: the
smallest object label of the neighbourhood context is assigned

1051-8215 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSVT.2015.2450371, IEEE Transactions on Circuits and Systems for Video Technology

4

LX

Row buffer
labels

Discarded
labels

Unlabelled
pixels

Neighbourhood
labels

X
A CBB
DD

Fig. 2. The four different groups of image labels.

to LX and merging labels are stored on the merger table
M (see III-B). A merger operation on two labels l0 and l1
is referred to as merging l0 and l1. A merger operation on
two component segments s0 and s1 of the same connected
component is referred to as merging the component segments
s0 and s1. The feature vector associated with each label is
stored in the data table DT and is updated every time its
object label is assigned to LX . The new label operation and
the label copy operation are discussed in Section III-B.

A. Neighbourhood Context and Row Buffer

The proposed architecture is based on the single-pass CCA
algorithm from [14]. For this single-pass CCA algorithm, the
decision as to which label to assign to LX only depends on the
labels of the previous image row from A to the end of the row
and the labels of the current row left of X. In this architecture
we distinguish between four different types of labels as shown
in Figure 2:
• The neighbourhood labels (cross-hatched) LA through

LD are required in the current clock cycle to determine
the current pixel’s label LX .

• The row buffer labels (hatched) are required for labels
associated with pixels processed in subsequent clock
cycles.

• Discarded labels (marked grey) which are not required
for further decisions.

• Unlabelled pixels (marked white) which have not been
processed yet.

Figure 2 shows the source image I , where all pixels before X
are already processed in raster scan order. Only the neighbour-
hood labels and the row buffer labels are relevant to determine
the label LX and must be stored for processing subsequent
image rows. Since no labelled image is saved, the label of the
current pixel is stored on the row buffer RB for one image row
until it is required again for the decision process in the row
below. The output of RB is connected to, and addresses the
merger table which is discussed in Section III-B.

To parallelise and effectively accelerate the label selec-
tion, simultaneous read and write access to all labels of the
neighbourhood context is required. This is realised by using
a register for each of the labels LA to LD. After a merger
operation, an update of LB and LC is required. The next
cycle’s LB is assigned the current label LX . When the next
cycle’s LC is an object pixel it needs to be updated in case of
a merger operation when I[x + 2, y − 1] = 1. These updates
are realised by multiplexers at the input of the registers. The

LcLBLA

LD

Neighbourhood context

RB control

Row buffer

LX
LRB

Port0

Port1

Component association

Path compression
logic

Stack S

End of row

1 bit

2×WAL +1 bit

Merger table

1

N
...

L

Lmin Lmax

Merger pattern

W
A

L
+W

L
+

1
b

it

addr1, data1,
wena1

addr0
wena0
data0

q0

q1

W
A

L b
it

W
A

L b
it

Port0

Port1

WAL bit

Fig. 3. Register-transfer level diagram of neighbourhood context, row buffer
and component association unit.

size of the row buffer depends on the image width W . A label
added to the row buffer is not accessed for W − 1 cycles, i.e.
it does not need to be read for the duration of processing one
image row. This allows a realisation as a dual-port BRAM.
Figure 3 shows the architecture of the neighbourhood context
and row buffer on the register-transfer level.

B. Label Selection and Image Component Association

The label selection unit assigns the minimum object label of
the neighbourhood context to LX and generates control signals
to update tables of the component association unit. When
processing the image pixels in raster scan order, different
initial labels may be assigned to different component segments
of a connected component. To keep a record of merged labels,
a rooted tree data structure containing vertices for the labels
is used. Edges point from child vertices to parent vertices,
as defined in [35]. This data structure is stored in a merger
table M which is realised as a 1-D array. Each entry, M [l],
represents the directed edge from the vertex l to its parent
M [l]. Every connected component and component segment is
identified by the root label of its tree structure, which points
to itself in M .

If the current pixel is an object pixel and all neighbour
labels are background, a new label l is assigned to LX and
the merger table entry of l is initialised to point to itself, i.e.
M [l] := l. A label copy operation assigns the object label in
the neighbourhood to LX . In the neighbourhood context of a
merger pattern LAD 6= LC . To label each pixel correctly, the
minimum label Lmin = min(LAD, LC) is assigned to LX

[14]. All pixels labelled Lmax = max(LAD, LC) processed
before a merger pattern were already added to the row buffer
RB and cannot be changed immediately, therefore the merger
table entry of Lmax is set to point to Lmin so that the old
labels in RB can be replaced by new labels after being read
out, i.e. M [Lmax] := Lmin which makes Lmin the component
segment’s root label.

The merger table M is realised as a dual-port BRAM. One
port is used as a read port to look up the labels output by
the row buffer; a merger operation updates the rooted tree

1051-8215 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSVT.2015.2450371, IEEE Transactions on Circuits and Systems for Video Technology

5

1

2

3

1 2

1

Fig. 4. This example image contains patterns inducing a new label 1 , label
copy 2 or merger 3 operation. After the merger pattern at position 3 the
merger table entry of 2 points to 1.

data structure on M via the second BRAM port. This enables
continuous lookups in every clock cycle for the labels at the
output of the row buffer, while the rooted tree data structure
in M can be updated simultaneously via the write port.

All numbers in the figures used for the following examples
represent the labels after the operations of the corresponding
image pattern were carried out. Circled numbers in the exam-
ples, like 1 , refer to positions in the image where patterns
induce operations. In Figure 4 at positions 1 through 3 an
example for a new label pattern, a label copy pattern and a
merger pattern are given.

A series of merger patterns of the same connected com-
ponent where LC < LAD creates a label chain in M ,
representing a path in the rooted tree, so that the labels
stored in the row buffer do not yield the root label with a
single lookup in M . A chain is resolved by making all its
non-root label’s vertices direct children of its root vertex.
A reverse scan over the chains is executed to compress the
tree in the merger table M to a height of one. In union-find
algorithms this operation is called path compression [36]. The
label pairs consisting of Lmin and Lmax for the reverse scan
are pushed onto a stack S by every merger operation where
LC < LAD during the scan of the image. For every pair of
labels popped off the stack S at the end of the row, the merger
table is updated with M [Lmax] := M [Lmin] which eventually
resolves the chains.

An example of an image pattern resulting in a chain is
illustrated in Figure 5. The chain generates 3 stack entries. The
labels in the neighbourhood context of positions 4 to 6 lead
to merger operations linking the component segments initially
labelled 1 to 4 and push the label pairs (3, 4), (2, 3) and (1, 2)
on the stack S. At the end of the image row (position 7) the
merger table M contains a chain where label 4 points to label
3, label 3 to 2 and label 2 to 1. For labels 3 and 4 a single
lookup in M does not yield their component segment’s root
label 1 because of the chain (4 → 3 → 2 → 1). By popping
the stack entries off S in reverse order, the content of M is
compressed by updating the merger table entries of all labels
to point to the root label 1.

The processing of each stack entry consists of two read and
one write operation requiring in total three clock cycles. These
operations can be pipelined, and with a dual-port BRAM for
the merger table require on average one clock cycle per update
[14]. A maximum chain consisting of dW2 e merger patterns is
possible in one image row, therefore the worst case stack depth
is dW2 e. The image pattern creating dW2 e merger operations
is not the pattern that generates the maximum number of

4 5 6 7

1
2

3
4

Fig. 5. Image with chain pattern. By saving the label pair of a merger
operation on the stack S, the content of M (4→ 3→ 2→ 1) is updated at
the end of the image row. Then the content of M is 4→ 1, 3→ 1, 2→ 1.

Data table E V

Feature vector collection

VC
◦

◦

◦

Label management

mod W
counter

Finished
FVs

1

N

Row
number

R
Augmented

label

FVC-FSM

dtmux

vcmux

q0

q1

VC

IFV

q0
VC

...

RBreg

Label
pattern

LX

Lmin

Lmax q1 Feature vectors

data0
wena0
addr0

addr1
wena1
data1

Reusable labelReusable merger label

Label generator

◦

q0

LS

LC

∅

Port0

Port1

L

∅
res

LVC

Fig. 6. Hardware units used for label recycling: the feature vector collection
unit and the label management unit.

stack entries averaged over the whole image. The worst case
creates a pattern for which a merger operation is carried out
for every 5th pixel of every row. In average for processing this
worst case image, the number of stack entries after each image
row is dW5 e reducing the average throughput by 18% [14]. If
the image source inserts a sufficiently long gap between two
rows (e.g. the blanking period of an image sensor) then real-
time processing is possible. Otherwise a buffer for the pixel
stream at the input to cover bandwidth peaks allows real-time
processing. For the stack S, write access is required during
processing an image row and read access is necessary at the
end of the row making the realisation as a single port BRAM
sufficient.

C. Label Recycling and Feature Vector Collection

In previous CCA architectures the memory requirements of
M and DT are proportional to the image area, because in
a worst case image a quarter of the pixels can be different
connected components [14], [19]. However, at any time in the
raster scan, the number of different labels assigned to pixels
in an image row is only proportional to the image width [31],
[25]. Memory requirements can be significantly reduced by
recycling labels no longer in use, enabling entries of M and
DT to be reused after a connected component is finished. The
label management unit keeps a record of the unused labels on

1051-8215 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSVT.2015.2450371, IEEE Transactions on Circuits and Systems for Video Technology

6

the label reuse FIFO R , which is initially filled with all labels,
one through dW2 e. For each new label operation, an entry is
read off R and assigned to the current pixel. For the reuse of
already finished connected components two scenarios have to
be distinguished:
• Recycling Lmax after a merger operation
• Recycling the label of a finished connected component

The recycling of Lmax requires that Lmax is not contained
in the row buffer anymore. This is the case one row after a
merger operation was carried out, i.e. the label management
unit has to delay the reuse of these labels until W more pixels
have been processed.

Each connected component keeps its label until its end is
detected. To detect finished connected components, every label
which was assigned to a pixel in the previous row, but is
not assigned to LX in the current row, belongs to a finished
object, i.e. the label and the associated memory resources can
be reused immediately.

The position in the image where a label is recycled and
added to R depends on the input image I , therefore the
recycled labels on R are not necessarily in numerical order.
The property from [14] that a merger operation always chooses
the minimum label for LX can therefore result in a corrupted
merger table M not reflecting the actual label associations
of the image. The image in Figure 7 demonstrates a case in
which several merger operations create two root labels for a
single connected component by always assigning the minimum
label to LX . To cover this case the concept of augmented
labels (AL) is introduced. Labels are augmented with the
row number they are generated in, i.e. each label consists
of two parts: the row number and the index part. The row
number is used to determine the minimum label during a
merger operation: Lmin := LC when LAD.row > LC .row,
else Lmin := LAD. The index part is used to access tables
such as the merger table M , e.g. M [LX] is realised as
M [LX .index]. Examples for augmented labels are given in
Table III. Augmented labelling ensures that a merger operation
always assigns Lmin to the label created earlier in the scan
process. With augmented labels, the rooted tree data structure
on M always correctly reflects the current structure of unfin-
ished connected components in the source image I detected
up to the current position in the raster scan. The index parts
of labels of finished connected components are written to the
label reuse FIFO R. The label index of Lmax of a merger
pattern is added to R by a merger operation. The condition to
delay reuse of Lmax is implicitly fulfilled by using a FIFO to
recycle labels.

To detect finished connected components, an active tag E is
introduced for each connected component. If during the raster
scan a label is assigned to LX , its entry in E is updated with
y mod 3, where y is the current row number. Any connected
component for which its active tag is not updated in the current
image row is finished. Their feature vectors are read out and
their labels are recycled. A connected component is finished
in row y, when its label does not appear in row y + 1 of
the labelled image L′, therefore, the read-out and recycling
is carried out in parallel to scanning row y + 2. The active
tag of a label ready to be recycled is, therefore, y− 2 mod 3.

4

3 2 1

10

8

11 12

13

9

Fig. 7. Assigning the labels out of order creates a corrupted merger table.

TABLE II
DESCRIPTION OF DATA STRUCTURES AND COMBINING OPERATIONS FOR

THE FEATURE VECTORS bounding box, area AND first order moment.

Feature
Data

structure
in DT

Initial
feature
vector

IFV (x, y)

Combining

FVa ◦ FVb

Area A 1 Aa +Ab

Bounding
box

xmin

ymin

xmax

ymax


x
y
x
y


min(xmin,a, xmin,b)
min(ymin,a, y1min,b)
max(xmax,a, xmax,b)
max(ymax,a, ymax,b)


First
Order

Moment

(
M10

M01

) (
x
y

) (
M10a +M10b

M01a +M01b

)

For a practical and efficient implementation the active tag E is
mapped to a BRAM. This allows up to one label to be recycled
per clock cycle and one feature vector to be read out in
parallel with processing the following row. In this architecture
the recycling process requires an additional 5 clock cycles of
latency until the recycled label is available to be assigned to a
new connected component. This is caused by pipeline registers
and FIFO delays. The number of labels required for processing
a worst case image is therefore dW+5

2 e.
The feature vector (FV) for each connected component is

accumulated during the raster scan and stored to the data table
DT . For a new label operation the data table entry is initialised
with the current pixel’s feature vector referred to as the initial
feature vector (IFV). A label copy operation combines LX ’s
DT entry with the IFV and a merger operation combines the
DT entries of the two labels and the IFV. The operator ◦
is defined for combining the feature vectors. The combining
operation, the data structure in DT and the IFV all depend on
the feature vector, as shown in Table II for the area, bounding
box and first order image moment feature vectors.

A new label operation requires one write operation for
storing the feature vector, a label copy operation requires one
read followed by a write operation and a merger operation
requires two reads followed by a write and an invalidation
operation of the data table DT and the active tags E. Addi-
tionally the read-out of feature vectors of finished connected
components requires one read operation and one invalidation
operation per finished connected component. Therefore, up to
five memory operations per pixel are required. The proposed
novel scheduling scheme makes a single BRAM port sufficient
for updating feature vectors and a second BRAM port for read-
out of finished connected components and invalidating entries
no longer used. This reduces the memory resources required

1051-8215 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSVT.2015.2450371, IEEE Transactions on Circuits and Systems for Video Technology

7

Stale_resol

Merger

Merger

LX

Otherwise

vcmux/res dtmux addr0 wena0

VC◦q0◦IFV
VC◦q0

Lmax_reg

Lmax_reg

1
1

Otherwise

Stale label resolution 2

LX

Otherwise

vcmux/res dtmux addr0 wena0

VC◦q0◦IFV -
VC◦q0

Lmin

LA

0
1

Condition
Outputs

Condition
Outputs

Immediate resolution

vcmux/res dtmux addr0 wena0
Condition

Outputs

Stale_label & Stale_resol

No merger

New label
Stale_label & Stale_resol
Stale_resol
Merger
LX

End_of_run
Otherwise

vcmux/res dtmux addr0 wena0

-
1
-
-
-
-
-

Condition
Outputs

Did_read
LX

addr1 wena1

Stale_label & Stale_resol

-
VC
VC
VC
VC

VC
VC

-
LC

RBreg

LC

Lmin

LVC

LB

0
0
0
0
0
1
0

-
LVC

-
-
-
-
-

Condition
Mux select vcmux/res dtmux

◦ q0◦ q0
◦IFV

Stale label resolution 1

LX

Otherwise

vcmux dtmux addr0 wena0

VC◦q0◦IFV
VC◦q0

LB

LB

0
0

Condition
Outputs

-
-

addr1 wena1

RBreg2

RBreg2

1
1

LX

Otherwise
VC◦q0◦IFV

VC◦q0
LB

LB

1
1

Conditions
:= ¬LX & LVC & ¬LB

:= (LVC_reg ≠ Lmin_reg) & ¬New_label_reg & ¬End_of_run_reg
End_of_run
Did_read

:= ¬V[Lmin_reg]
:= (RBreg = LShead)

Stale_label
Stale_resol

Fig. 8. Finite state machine for scheduling memory accesses in the feature vector collection.

for the data table DT by 50% (from two dual-port memories
to a single dual-port memory) compared to Ma’s architecture
[1] and is a key improvement of the proposed architecture.

The architecture of the feature vector collection unit is
shown in Figure 6. It contains the finite state machine schedul-
ing the feature vector update process (FVC-FSM). Its Mealy
state diagram is shown in Figure 8. The label pattern at the
current position X serves as a condition to determine the
FSM’s outputs and the next FSM state. To save space in the
figure the new label pattern, label copy pattern and merger
pattern are abbreviated by new label, copy and merger. The
condition at the top has the highest priority, if it does not
match, the subsequent condition is evaluated. A stale label
pattern is detected by the condition Stale label which results
from comparing RBreg , a register at the output of the row
buffer, and the label at the head of the label stack LS,
the resolution of a stale lable is detected by the condition
Stale resol. Details on stale label processing are introduced
in Section III-D. The FVC-FSM controls the BRAM ports
addr0, wena0, addr1 and wena1 directly, the ports data0 and
q0 are connected with the feature vector cache VC and the
IFV via the multiplexers vcmux and dtmux depending on the
label pattern. Port data1 is always ∅ since it is only used for
invalidations. The feature vector cache V C is realised as a
register to store the feature vector associated with the current
label LX to delay a write access to the data table DT . The
label associated with the accumulated feature vector on V C
is LV C . The register Lmax reg contains the label of Lmax

of the pixel processed one clock cycle earlier. The BRAM
port for feature vector updates can either be used for writing
feature vectors or for read requests. The result of a read request
appears on the output q0 in the next clock cycle. To accumulate
the feature vectors with as few memory accesses as possible,

the feature vector cache VC is updated with the feature vector
of label LX while the current connected component is scanned.
A new label operation requires VC to be filled with the initial
feature vector IFV, a label copy operation on LD requires the
feature vector on the VC to be combined with IFV and a label
copy operation applied on LA, LB or LC requires to combine
VC and the feature vector at the q0. The feature vector on VC
is written to its data table entry when a background pixel is
reached at the end of a run when the condition end of run is
true.

Performing a merger operation combines the feature vectors
of Lmin, Lmax and IFV. This is scheduled over three clock
cycles carried out when processing the current, the previous
and following pixel. In general for every object pixel the IFV
is combined with the feature vector cache VC. Additionally
the following operations are required: In the first cycle LC is
applied to addr0 requesting LC’s feature vector. The feature
vector of LAD was either already read in the previous cycle as
LB if the previous pixel was background or is already on the
VC if the previous pixel was an object pixel. In state merger
the feature vector at q0 is combined with the VC and the data
table entry associated with the previous Lmax is invalidated.
Depending on the following pixel the combined feature vector
on VC is either written to the data table or further accumulated.

The new value assigned to the feature vector cache V C in
each cycle is either IFV , IFV ◦V C, V C ◦q0 or V C ◦IFV ◦
q0, by using the reset signal VC is cleared to ∅. For the input of
the data table it is either an empty feature vector to clear a DT
entry ∅, V C or V C ◦q0. If the current pixel is an object pixel,
IFV is always combined with V C. A read request issued in the
previous clock cycle is indicated by the did read condition,
which triggers the combination of V C with the output q0 in
the current clock cycle. For the state no merger these two

1051-8215 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSVT.2015.2450371, IEEE Transactions on Circuits and Systems for Video Technology

8

1 2
3 4 5 6 7 8 9 10

11

R3 R4 R5 R6 R7 R8 R9I4 I5 I6 I9W7W3

R1 I1 R2 I2 R3 R4 R5 R6 R7 R8 R9

W10W8R10

R10 R11

W11Port 0

Port 1

Image

Operations on

Fig. 9. The image shows the read (R), write (W) and invalidate(I) operations
for BRAM port 0 and 1 for the last image row.

degrees of freedom are represented by additional conditions
below a horizontal dashed line extending the conditions above
the line. For example: If the current pixel in an object pixel,
a read request was issued in the previous clock cycle and the
current pixel is a merger pattern, the multiplexer vcmux is set
to V C ◦ q0 ◦ IFV .

The example in Figure 9 in the lower part illustrates the
read, write and invalidation operations induced by the patterns
of the image in the upper part of Figure 9 for each cycle on
memory port 0 for feature vector collection and the operations
for reading out the feature vectors of finished image objects
on memory port 1. The index of each read (R), write (W) or
invalidate (I) operation indicates the address it is applied on.

The second BRAM port is used to read out feature vectors
of finished connected components and invalidate operations.
An invalidate operation on addr1 of the second port is carried
out when wena1 is one, during this cycle the read-out process
is paused. There can be up to dW2 e different connected
components in a single image row. If all of them finish in the
same image row, dW2 e read and dW2 e invalidation operations
have to be carried out. Each feature vector and each active tag
is associated with exactly one connected component, therefore
E can be packed together into the same BRAM as DT .

Table III shows how augmented labels and the reuse FIFO R
are used to assign the correct labels and to extract the feature
vectors for each connected component of the image in Figure
7. In this example the augmented labels are represented by
two digit numbers. The first digit represents the row number
and the second digit the index. The changes of table and FIFO
entries requiring a write operation to a memory are highlighted
in grey. Before processing the image (position 8) all tables
are initially blank, the label reuse FIFO R contains the reused
label 4 at the head followed by 3, 2, 1.

For a new label operation the connected components are
labelled with augmented labels, i.e. label 4 becomes 14, label
3 becomes 33, etc. At 9 DT contains a feature vector for
each of the component segments labelled 31, 32, 33 and 14.

The object pixel at 10 has two object labels 14 and 33 in its
neighbourhood, i.e. a merger pattern. At this position Lmin =
14 and Lmax = 33, making M [3] to point to augmented label
14 and recycling label 3 to R. The feature vector at DT [3]
is combined with the feature vector of DT [4] and stored to
DT [4], V [3] is set to false and DT [3] is invalidated.

The patterns at positions 11 and 12 lead to merger opera-
tions which update the entries of labels 32, 31 and 14 in tables
M , V , DT and E and return non-root labels to FIFO R.

TABLE III
CORRECT LABELLING OF IMAGE IN FIGURE 7 BY USING AUGMENTED

LABELS. A # IN THE DATA TABLE DT INDICATES THAT THE
CORRESPONDING ENTRY CONTAINS MEANINGFUL FEATURE VECTOR

DATA, ∅ INDICATES THAT THE ENTRY IS EMPTY.

Tables FIFO R

8

1 2 3 4
M 00 00 00 00
V f f f f
DT ∅ ∅ ∅ ∅
E 0 0 0 0

↓
...
3
4
↓

9

1 2 3 4
M 31 32 33 14
V t t t t
DT # # # #
E 1 1 1 1

↓
...
...
5
↓

10

1 2 3 4
M 31 32 14 14
V t t f t
DT # # ∅ #
E 1 1 0 2

↓
3
...
5
↓

11

1 2 3 4
M 31 14 14 14
V t f f t
DT # ∅ ∅ #
E 1 0 0 2

↓
2
...
5
↓

12

1 2 3 4
M 14 14 14 14
V f f f t
DT ∅ ∅ ∅ #
E 0 0 0 2

↓
1
...
5
↓

13

1 2 3 4
M 14 14 14 14
V f f f f
DT ∅ ∅ ∅ ∅
E 0 0 0 2

↓
4
...
5
↓

At position 13 the connected component labelled 14 is
detected as finished so its label is returned to R as well.

D. Stale labels

A label is called stale if a single lookup in M does not
yield the root label. This has not been taken into account in
previous hardware architectures [14], [19] and requires further
processing. A bridge pattern is a component segment in which
an object label appears two times in the current image row
separated by background pixels. The bridge pattern’s object
pixels in the current row are referred to as its piers. The pixels
belonging to the bridge which are above the current row are
referred to as the bridge’s arc. In the following figures the
arc is either shown as a group of pixels or as a dashed line
indicating a path of object pixels. Merging a bridge pattern’s
pier with a smaller label requires a lookup in M for the other
pier to be labelled correctly in the neighbourhood context.
Thus the height of the connected component’s tree structure
becomes 1. At the beginning of each image row the height of
all tree structures is 5 1 due to chain resolution. A merger
pattern with a bridge pattern’s left pier in the current image
row which merged another component segment in the previous

1051-8215 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSVT.2015.2450371, IEEE Transactions on Circuits and Systems for Video Technology

9

1
3

2

LX 2LX

1 2

3

Fig. 10. Two basic examples for stale labels: At position X the content of
the merger table M is: 3 → 2 → 1. Label 3 is looked up to label 2, which
has been merged with label 1 earlier in the current row.

row results in a tree height of 2 in the merger table M (Figure
10). A single lookup of a label which has a distance of 2 to its
root label in the rooted tree structure in M does not yield the
root label. If such a non-root label appears as the minimum
label in the neighbourhood of an object pixel, the wrong label
is assigned to LX .

A root label on M can be detected by using an additional
lookup to check if the label points to itself. A valid flag V
for each label allows stale labels to be detected without this
additional lookup: A new label operation sets the new label’s
V flag to true, a merger operation sets the V flag of Lmax to
false. Reading out V along with DT tells whether the assigned
label is a root label. If a stale label is output by the row
buffer, the label assigned to LX is not a root. Therefore, LX ’s
feature vector is stored to DT until its root label appears in the
neighbourhood context and their feature vectors are combined.

If there are nested bridge patterns, several stale labels can be
detected before their root labels appear in the neighbourhood
context. To keep a record of the stale labels which have to be
merged with their root labels a label stack LS is introduced.
The label LX is pushed to LS whenever its V flag is false. Its
feature vector is temporarily stored on the data table entry of
LX , which is unused for any non-root label. When LShead,
the label at the head of the label stack, is equal to the output
of the row buffer, it is popped off LS to combine the feature
vector of LShead and its root label. In the FSM in Figure 8
the states Stale label resolution 1 and Stale label resolution 2
handle merger patterns of feature vectors of non-root labels.
If LX is detected to be stale and its resolution is detected
simultaneously, the feature vectors are handled as shown in
state immediate resolution of Figure 8. The V flag and the data
table DT each have one association per label, i.e. they can be
mapped to the same logical BRAM resource. The maximum
number of stale labels which can appear in an image row is
up to dW10 e. Depending on the image size, stack LS can either
realised as BRAM or distributed RAM.

The two patterns in Figure 10 generate tree structures of
height 2 in M resulting in stale labels. In both images label
2 and 3 are merged in the previous image row. After merging
label 1 and 2 in the current image row, all pixels labelled 3
leaving the row buffer are translated to label 2 by M assigning
a non-root label to LX .

Table IV reflects the steps for processing the image in Figure
11 making use of the label stack LS. At first we consider the
connected component consisting of the component segments
initially labelled 01, 02 and 23. The merger pattern at 17

induces a merger operation updating M [3] to label 02 and sets

01 02

23

44 45

66

14

18 19 20 21 22 23

16 1715

Fig. 11. Image containing nested connected components with stale labels.

the valid flag of label 23 to false, i.e. V [3] = false indicates
that label 23 is not a root label. The feature vectors of the
component segments 02 and 23 are combined and stored to
DT [2], the data table entry of label 3 is cleared, DT [3] := ∅.
Therefore, the tree height of the component segment labelled
02 is one before reaching position 18 . The merger operation
induced by the merger pattern at position 18 updates M [2]
to label 01 and sets V [2] := false. The tree structure of the
connected component labelled 01 is therefore of height two
which makes label 23 stale. At position 19 LB is 02 as a
result of a single lookup of label 23. Since V [2], was set to
false at 18 , a non-root label is detected and assigned to LX .
From this it follows that the feature vector of the current pixel
is stored to DT [2] and label 2 is added to the label stack LS.
At position 23 the label stored on the register attached to the
output of the row buffer RBreg is equal to the label at the head
of the label stack LS. The feature vector of the non-root label
02 temporarily stored at DT [2] is combined with the feature
vector of its root label 01 and stored to DT [1]. Simultaneously
DT [2] is cleared and label 2 is popped off LS. For the inner
connected component consisting of the component segments
44, 45 and 66, the merger operation induced by the merger
pattern at 16 updates M [6] to label 45 and sets V [6] := false.
The feature vectors of the component segments 45 and 66 are
combined and stored to DT [5], the data table entry of label
66 is cleared. As before, label 66 becomes stale because of
the merger operation at 20 , which increases the height of the
tree structure of the connected component labelled 44 from
one to two and sets V [5] := false. The feature vectors of the
component segments 44 and 45 are combined and stored at
DT [4], the data table entry of label 45 is cleared, DT [5] := ∅.
At 21 the non-root label 45 (which is looked up from label
66) is assigned to Lmin. Therefore, the feature vector of the
pixel at 21 is stored at DT[5] and label 5 is added to the
label stack LS. At position 22 the label stored on the register
attached to the output of the row buffer RBreg is equal to the
label at the head of the label stack LS, the feature vector of
the non-root label 45 temporarily stored at DT [5] is combined
with the feature vector of its root label 44 and stored in DT [4].
Simultaneously DT [5] is cleared and label 5 is popped of LS.

E. Validation

The architecture relies on the assumption that a single
lookup in M is always sufficient to assign a label to LX

which associates the pixel at position X with its connected

1051-8215 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSVT.2015.2450371, IEEE Transactions on Circuits and Systems for Video Technology

10

TABLE IV
FEATURE VECTOR EXTRACTION FOR THE CONNECTED COMPONENTS OF

FIGURE 11 WHICH CONTAINS SEVERAL STALE LABELS. AUGMENTED
LABELS IN M ARE REPRESENTED BY A TWO DIGIT NUMBER - THE FIRST
DIGIT IS THE ROW, THE SECOND THE INDEX. THE VALID FLAGS IN V ARE

EITHER (t)rue OR (f)alse.

Tables LS

14

1 2 3 4 5 6
M 00 00 00 00 00 00
V f f f f f f
DT ∅ ∅ ∅ ∅ ∅ ∅
E 0 0 0 0 0 0

↓↑

∅

15

M 01 02 23 44 45 66
V t t t t t t
DT # # # # # #
E 0 0 2 1 1 0

↓↑

∅

16

M 01 02 23 44 45 45
V t t t t t f
DT # # # # # ∅
E 0 0 2 1 0 0

↓↑

∅

17

M 01 02 02 44 45 45
V t t f t t f
DT # # ∅ # # ∅
E 0 0 0 1 0 0

↓↑

∅

18

M 01 01 02 44 45 45
V t f f t t f
DT # ∅ ∅ # # ∅
E 1 1 0 1 0 0

↓↑

∅

19

M 01 01 02 44 45 45
V t f f t t f
DT # # ∅ # # ∅
E 1 1 0 1 0 0

↓↑

2

20

M 01 01 02 44 44 45
V t f f t f f
DT # # ∅ # ∅ ∅
E 1 0 0 1 1 0

↓↑

2

21

M 01 01 02 44 44 45
V t f f t f f
DT # # ∅ # # ∅
E 1 0 0 1 1 0

↓↑

5
2

22

M 01 01 02 44 44 45
V t f f t f f
DT # # ∅ # ∅ ∅
E 1 0 0 1 1 0

↓↑

5
2

23

M 01 01 02 44 44 45
V t f f t f f
DT # ∅ ∅ # ∅ ∅
E 1 1 0 1 0 0

↓↑

2

component. To achieve this, the tree structures in the merger
table M are compressed to a height of one by different means:
Merger operations can either affect the tree structure in M of
labels to the left or to the right of position X . Label chains
create tree structures with height > 1 for labels left of the
current position X which are relevant for the processing of the
next image row. Stale labels create a tree height of 2 for labels
right of X which are relevant for processing the current image
row. With the stacks S and LS both cases, chains and stale
labels, are handled by memorising temporary differences in

TABLE V
VALIDATION OF POSSIBLE COMBINATIONS OF MERGER PATTERNS. Don’t

cares IN THE TABLE ARE MARKED BY ’-’.

Combinations of Merger Patterns
Merger
Pattern Stale Bridge LAD

> LC

Pattern
Possible

Correct
labelling# AD C AD C

0 0 0 0 0 0 X X
1 0 0 0 0 1 X X
2 0 0 0 1 0 X X
3 0 0 0 1 1 X X
4 0 0 1 0 0 X X
5 0 0 1 0 1 X X
6 0 0 1 1 0 X X
7 0 0 1 1 1 X X
8 0 1 0 0 0 7
9 0 1 0 0 1 7

10 0 1 0 1 0 7
11 0 1 0 1 1 X X
12 0 1 1 0 0 7
13 0 1 1 0 1 7
14 0 1 1 1 0 7
15 0 1 1 1 1 X X

16-19 1 0 0 - - 7
20 1 0 1 0 0 X X
21 1 0 1 0 1 7
22 1 0 1 1 0 X X
23 1 0 1 1 1 7

24-31 1 1 - - - 7

2 112 2

Fig. 12. Impossible scenario: Label between bridge piers appears to the right
or left of the bridge.

M and re-establishing the single lookup principle by updating
the merger table M after a chain or a stale label.

To ensure that each pixel is associated with its connected
component, the different combinations for stale label and
bridges are enumerated in Table V. Chains and stale labels are
formed by merger patterns or combinations of merger patterns
and bridge patterns. In an image neighbourhood not all combi-
nations of stale labels and bridge patterns are possible. This is
analysed in the following. The cases not possible are marked
with a 7 in Table V. There is no need to further examine
whether labelling is correct for these impossible combinations.
All combinations that can occur are marked by a X and were
examined to assign the correct label to the current label LX .
In the image in Figure 12 the current image row contains two
piers of a bridge pattern labelled 1 and a connected component
between the two bridge piers labelled 2. In the already scanned
image part no pixels can be labelled 2 outside the bridge.
Therefore, a pixel’s label between two bridge piers of the same
bridge is always larger than the bridge’s label. Merger patterns
10, 14, 21, 23 of Table V are therefore impossible.

By the definition of Section III-D a stale label is always
created by a bridge. This excludes merger patterns 8, 9, 12,
13, 16-19 from the possible patterns, as marked in Table V.
For label LC to be stale, one bridge is necessary, for the label

1051-8215 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSVT.2015.2450371, IEEE Transactions on Circuits and Systems for Video Technology

11

L
LX

L

L

L
LX

LX

LX

Fig. 13. All failing attempts to make the two object labels of a merger pattern
stale.

LAD to be stale, two bridges are required. The four different
combinations to form a pattern making both LAD and LC stale
are shown in Figure 13, bridges are indicated by dashed lines.
All four attempts to make both LAD and LC stale fail because
of intersecting bridges making them a connected component,
therefore the merger patterns 24-31 of Table V can never exist.
Table V shows that all cases of merger patterns for stale labels
and bridges which are possible are labelled correctly.

To ensure the functional correctness of the implementation
of the proposed architecture we streamed all possible pixel
combinations for a small size test image into the architecture
and verified the outputs against a reference implementation
[37]. The size of the test image chosen for this full verification
is a trade-off between the complexity of the pixel patterns
in the image and processing time which grows exponentially
with the number of pixels. For the chosen image size of 9×5
pixels, all of the possible 245 different image patterns were
successfully verified against the reference implementation ap-
plying the classical two-pass connected components labelling
algorithm. To reduce the duration of the verification process
an on-chip verification environment realised in hardware on
an FPGA was used. It contains 75 parallel working instances
of the proposed CCA architecture and the reference imple-
mentation, enabling an accelerated verification process, from
more than one year of verification time on a single instance
down to seven days for all instances processing in parallel. The
exhaustive verification of all 9× 5 image covers the cases of
Table V, still parts of the implementation are not exercised by
images of this size. This did require further validation to make
sure the implementation realises all scenarios of the previously
described architecture correctly, e.g. for nested stale labels
such as in Figure 11. These parts of the implementation were
validated by checking the code coverage of the VHDL code in
behavioural simulation to ensure a correct functionality [38].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section the results for the realisation of the proposed
connected components analysis architecture is evaluated and
benchmarked. Its performance and memory-efficiency is com-
pared to other connected components analysis hardware archi-
tectures for different image sizes from VGA with 640 × 480
pixels per image to ultra-high-definition (UHD) with image
sizes up to 7680× 4320 pixels [2].

A. Memory Requirements

Table VI compares the number of bits required for the
memories integrated in the different processing blocks of the
CCA architectures for an image of the size W ×H pixels for

245

Test images

Image
stream

generation

...

...

=

Proposed
CCA

Architecture

Classical
CCL

Algorithm

=

Proposed
CCA

Architecture

Classical
CCL

Algorithm

=

Proposed
CCA

architecture

Architecture
using classical

CCL
algorithm

On-chip verification environment

Feature
vector

Feature
vector

Image
stream

75 instances of both architectures

Fig. 14. Block diagram of the on-chip verification environment which
successfully verified all combination of a 9 × 5 image against a reference
implementation.

both the architectures in [1] and the proposed architecture as
well as the classical CCL algorithm [20]. Both architectures
require the row buffer RB and the stack S of the same size
for the connected components analysis.

For the CCA architecture of [1] the following on-chip
memories are required: Every second pixel can be a different
connected component or be a component segment merging
another segment later in the image. Therefore, the number
of labels NL is only dependent of the image width. The
architecture requires two merger tables M , one to store the
label pairs for each merger pattern of the previous row and
one to store each label pair of the merger pattern of the current
row. To store a relation between two labels, each entry of the
merger table M is as wide as a label (WL). The aggressive
relabelling scheme requires a translation table TT with NL

entries of width WL. For the feature vector collection two
data tables DT , one for the feature vectors of the previous
row’s labels and one for the feature vectors of the current
row’s labels are required. The width WFV of each entry of
the data table DT is dependent on the feature to be extracted.

The proposed CCA architecture requires the following on-
chip memory: The number of labels NL depends on the image
width plus a constant to compensate for the 5 clock cycles
latency of the label recycling process, and is therefore dW+5

2 e.
The augmented labelling (AL) requires the merger table of
the proposed architecture to be as wide as the width of an
augmented label WAL. The label reuse FIFO R of the label
management unit needs to be able to store all labels, i.e.
requires a depth of NL labels. For the feature vector collection
a single data table DT with NL entries of width WFV is
sufficient.

Table VII compares the amount of on-chip memory required
between the classical CCL algorithm [20], the single-pass
architecture by Ma [1] and the proposed architecture for
extraction of the bounding box feature vector of images of
different sizes. We compare between on-chip memory required
for the label assigning process, such as the row buffer RB,
the stack S, the merger table M , the valid flags V , the FIFO

1051-8215 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSVT.2015.2450371, IEEE Transactions on Circuits and Systems for Video Technology

12

TABLE VI
COMPARISON OF THE MEMORY BITS REQUIRED FOR COMPONENTS

ANALYSIS FOR THE CLASSICAL CCL ALGORITHM [20], THE SINGLE-PASS
ARCHITECTURE FROM [1] AND THE PROPOSED ARCHITECTURE FOR

DIFFERENT IMAGE SIZES.

Classical [20] Single-pass [1] This work

NL dW×H
4
e dW

2
e dW+5

2
e

NM − bW−1
2
c bW−1

2
c

WL dlog 2(NL)e dlog2(NL)e dlog2(NL)e
WAL − − WL + dlog2(H)e
L NL ×WL

×W ×H
− −

RB − NL ×WL NL ×WL

S − 2×WL ×NM 2×WL ×NM

M NL ×WL 2×NL ×WL NL ×WAL

R − − NL ×WL

DT − 2×NL ×WFV NL ×WFV

TT − NL ×WL −
LS − − NL × dW10 e
V − − NL

E − − 2×NL

for reused labels R, the translation table TT and memory
required for the feature vector collection, such as the data table
DT , the label stack LS and the active tags E. The values of
the table of the proposed architecture and the values of the
architecture of [1] are depicted in the diagram in Figure 15.
For all image sizes from VGA to UHD8k the proposed CCA
architecture requires fewer on-chip memory resources than the
architecture of [1]. By halving the resources for feature vector
collection, the resources required for the entire architecture
can be reduced by up to 31% for extracting the bounding box
and the area feature vector for each connected component.
The width of the bounding box, the area and the first order
moment feature vector is dependent on the image dimension.
For the simultaneous extraction of multiple features, the width
of the data table increases accordingly. The feature vector for
the three features, bounding box, area and first order image
moment adds up to 175 bits per connected component. When
realising a CCA architecture extracting those three features
simultaneously, up to 42% of memory resources are saved
compared to [1]. For a wider feature vector even more memory
resources are saved.

As discussed in the introduction, the access time to the
memory structures, especially the latency, was identified to
be the most important criteria for processing a pixel stream
with a high throughput and low latency. Therefore, offloading
the memory structures to off-chip memory to save chip area
counteracts the key idea of the architecture. If implementing
the proposed architecture on an ASIC, there are a number
of possibilities to realise the memory structures, either based
on SRAM or DRAM cells [39]. While DRAM cells require
fewer transistors per bit than SRAM cells, in general, any data
stored in DRAM must be refreshed periodically. In CCA the
data structures are accumulated from one row to the next and
are therefore only up to date for a maximum of two image
rows before they are either changed or read out. For typical
image sizes this process is less than a millisecond which is
significantly lower than the refresh rate of a typical DRAM
cell. This allows the smaller DRAM cells to be used without

TABLE VII
COMPARISON OF ON-CHIP BRAM BITS REQUIRED FOR COMPONENTS
ANALYSIS FOR THE CLASSICAL CCL ALGORITHM, THE SINGLE-PASS
ARCHITECTURE FROM [1] AND THE PROPOSED ARCHITECTURE FOR

DIFFERENT IMAGE SIZES. THE SIZES OF DATA TABLE DT CORRESPOND TO
EXTRACTING BOUNDING BOX AND AREA FEATURES SIMULTANEOUSLY.

VGA DVD HD720 HD1080 UHD3k UHD4k UHD8k
640
×

480

720
×

576

1280
×

720

1920
×

1080

3840
×

2160

4096
×

2160

7680
×

4320
Rosenfeld’s classical two-pass algorithm [20]

L 5M 7M 16M 39M 174M 194M 763M
M 1.3M 1.7M 4M 9M 43M 48M 190M
DT 4.3M 5.9M 13.8M 32.6M 143.0M 157.0M 622.0M∑

10.8M 14.7M 34.5M 81.9M 0.36G 0.40G 1.57G
Ma and Bailey’s optimised single-pass architecture [1]

M 5760 6480 12800 19200 42240 45056 92160
TT 2880 3240 6400 9600 21120 22528 46080
RB 5760 6480 12800 19200 42240 49152 92160
S 2880 3240 6400 9600 21120 24576 46080
DT 35840 41040 76800 120960 264960 290816 576000∑

53120 60480 115200 178560 391680 425984 852480
This work

M 5760 6840 12800 20160 44160 49152 96000
R 2907 3267 6430 9630 21153 24612 46116
LS 576 648 1280 1920 4224 4920 9216
RB 5760 6480 12800 19200 42240 49152 92160
S 2880 3240 6400 9600 21120 24576 46080
DT 18243 20883 39043 61443 134403 147459 291843
E 646 726 1286 1926 3846 4102 7686
V 323 363 643 963 1923 2051 3843∑

36772 42084 80039 123879 271146 297829 589101

VG
A

D
VD

H
D
72
0

H
D
10
80

UH
D
3k

UH
D
4k

UH
D
8k

Image resolution

100k

200k

300k

400k

500k

600k

700k

800k

900k

#
B
R
A
M

bi
ts

Label assigning

Feature vector collection

This work

Ma et al.[1]

Fig. 15. The bar diagram shows the number of on-chip BRAM bits for the
label assigning in red, the feature vector collection in blue. The hatched bars
on the right shows the memory required for the architecture in [1], the left bars
show the memory required for the proposed CCA architecture for different
image sizes.

refresh. This applies to all internal memory structures except
the reuse FIFO R which needs to store the unused labels for
the duration of up to one frame.

B. Benchmark

The performance of the architecture is measured in a manner
similar to the benchmark in [11] with test images from the

1051-8215 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSVT.2015.2450371, IEEE Transactions on Circuits and Systems for Video Technology

13

(a) Misc (b) Textures (c) Aerials

cmean = 264946 cmean = 2673911 cmean = 265684

smax = 28 smax = 36 smax = 18

(d) Sequences (e) Worst case (f) Random noise

cmean = 264267 cmean = 6
5 ×W ×H cmean = 273744

smax = 4 smax = W
5 smax = 92

Fig. 17. This figure gives the mean number of processing cycles cmean

and the maximum stack size smax for (a) - (d) which are test images from
USC-SIPI Image Database [40]. (e) Worst case image [14] with the maximum
number of merger patterns. (f) Random noise image with 50% of object pixels
as in Figure 16(f).

Standard Image Database (SIPI) [40] and random images
with different densities of object pixels. All images for this
performance evaluation are of size 512×512 pixels. Greyscale
images are binarised using the threshold value determined by
Otsu’s method [41]. All results in this section are acquired
by behavioural simulation of the implementation of the CCA
architecture implemented in VHDL.

Every image pixel can be processed in one processing cycle;
additional processing cycles at the end of the image row result
from chain resolution. From this, it follows that the worst case
processing time occurs by maximising the number of entries
on stack S. To analyse the worst case processing time for
different image sizes from 64 pixels to 4 megapixels, images
with the worst case pattern of Figure 17(e) are evaluated.
Figure 16(e) shows that the number of processing cycles scale
linearly for the examined image sizes.

Random images were used to evaluate the execution time
against the number of object pixels in an image. Figure 16(f)
shows the execution time for processing a random image as
a function of the density of object pixels in the image for
512×512 images. For 0% and 100% density of object pixels,
the image contains either zero or one connected component;
the highest number of connected components is at 50%. The
diagram in Figure 16(f) shows that the execution time is
maximum between 40% and 50% image object density. This
corresponds to an overhead due to stack processing at the end
of the row of less than 5%, which is significantly lower than
in the worst case. To evaluate the architecture’s performance
for processing natural images representative image series from
SIPI database containing 215 typical images are used divided
to the categories misc, textures, aerials and sequences. In
Figure 17 the results for the mean processing cycles per image
for each image series and the maximum number of stack
entries for processing each image series is shown.

C. Hardware Resources

The hardware architecture for the proposed CCA was
described in VHDL and implemented for the Xilinx Virtex
6 VLX240T-2 (speedgrade -2, 40 nm technology), Xilinx
Spartan 6 SLX150T-2 (speedgrade -2, 45 nm technology)
and Xilinx Kintex 7 K325T-2L (speedgrade -2L, 28 nm
technology) to explore the performance on different FPGA
devices. To acquire comparable mapping and timing results,
for the implementation on all FPGAs the PlanAhead 14 default
implementation strategy was used and nothing but the CCA
architecture was implemented on the FPGA devices.

In the diagrams of Figure 16(a)-(c) the resources required
for the implementation of the proposed CCA architecture is
shown for a number of typical image sizes from VGA to
UHD8k for Kintex 7, Virtex 6 and Spartan 6. The diagram
in Figure 16(a) shows the number of lookup tables (LUTs)
which realise logic functions with up to 6 inputs [17], [42].
The number of registers is shown in the diagram in Figure
16(b). Both the number of LUTs and registers increase quasi-
logarithmically with the image width. The number of slice
registers is nearly identical for the three examined FPGA
devices, the number of LUTs varies between the device
families depending on the image size. The Kintex 7 and
Virtex 6 devices provide 18kBit and 36kBit BRAM resources,
Spartan 6 BRAMs are 8kBit and 16kBit. Since the unused
memory resources of a partially used BRAM are not available
to other components on the FPGA they are considered to be
used for the comparison. This results in a different number
of required BRAM bits for Spartan 6 and Virtex 6 or Kintex
7. The diagram in Figure 16(c) shows the number of used
BRAMs for different image sizes. The number of required
on-chip memories scales linearly with the image width. The
throughput of the CCA architecture is mainly proportional to
the maximum operating frequency fmax which is shown in
the diagram in Figure 16(d). For the implementation of the
CCA architecture on Kintex 7 and Virtex 6 fmax is almost
twice that implemented on the Spartan 6 which has a direct
impact on the throughput.

The throughput can be classified in two parts: a static
part with one pixel per clock cycle which is completely
independent of the image content and a data-dependent part
for resolving the label pairs of merger patterns (stored on S)
depending on the image content. The data-dependent part lasts
between 0 clock cycles if the stack S has no entries and dW5 e
clock cycles per image row for the worst case pattern of Figure
17(e). Thus considering the worst case pattern an image stream
of up to 166 megapixels per second can be processed in real-
time (for VGA resolution).

D. Comparison to Other Hardware Architectures

In Tables VIII and IX the algorithms and the implemen-
tations of several published CCA hardware architectures are
compared. These publications suggest a diverse variety of
methods on the algorithmic level as well as on the architectural
level and the used technology for implementation. The differ-
ences of these architectures on the algorithmic level include the
connectivity, either 4-connectivity of 8-connectivity, the scan

1051-8215 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSVT.2015.2450371, IEEE Transactions on Circuits and Systems for Video Technology

14

Fig. 16. The diagrams in (a) through (c) show the number of lookup tables (LUTs), slice registers and on-chip BRAM bits required by the implementation of
the proposed connected components analysis architecture for different image sizes and different FPGA families. Diagram (d) shows the maximum operation
frequency after the place&route (PAR). In (e) the number of clock cycles for processing square images of different sizes with the worst case pattern from
Figure 17 is shown, (f) shows the execution time of the proposed CCA architecture operated at 100 MHz for 512× 512 images filled with random noise
for different densities of object pixels.

TABLE VIII
COMPARISON OF THE ALGORITHM PROPERTIES OF CCA HARDWARE

ARCHITECTURES.

Algorithm # Passes Scan
method

Connectivity Worst case
identified

[1] Single-pass Pixel-based 8 True
[10] Single-pass Run-based 4 False

[14]/ [19] Single-pass Pixel-based 8 True
[33] Single-pass Run-based 4 True
[43] Two-pass Run-based 8 True

This work Single-pass Pixel-based 8 True

method, either pixel by pixel processing or run processing, and
the number of scans, either single-pass or two-pass. On the
architectural level they differ in image sizes, extracted feature
vector and the device technology used.

All of these factors directly affect the maximum frequency
the circuit of the CCA architecture can be operated at, which
plays a major role in the achievable performance. As a
basis for comparing the maximum throughput we chose the
throughput of a worst case image stream, because it provides
a true upper bound for the processing time and, therefore,
the applicability of the architecture for real-time processing.
Depending on connectivity, scan method and the number of
scans the worst case image differs; some publications lack the
identification of a worst case scenario. These aspects make a
direct comparison difficult. For this reason the results of each
architecture from Table IX are compared to the architecture
proposed in this paper individually.

Comparison to [1]: The architecture of [1] is the most
resource efficient architecture reported in the literature to date.

The key weakness of [1] is the requirement for two tables for
merger management and to translate labels due to aggressive
relabelling. This also requires use of two data tables, one for
the old labels and one for the new labels. Memory resources
scale linearly with image width, therefore, are more critical for
scalability. In Section IV-A we have shown that the BRAM
resources required for this work are fewer for all image sizes
compared to [1]. In this work the maximum throughput is more
than three times higher, some of which will be a result from
using a newer FPGA. The main advantage of the proposed
algorithm is label reuse reducing the memory requirements
for storing feature vectors.

Comparison to [10]: In [10] a CCA architecture is pre-
sented processing the input image after a transformation to a
representation as runs. The architecture of [10] considers 4-
connectivity which will give a different result to 8-connectivity
used in this paper. Four-connectivity requires fewer com-
parisons per pixel providing a shorter critical path in the
resulting hardware circuit. For an image size of 256×256 the
authors state a throughput around 90 megapixels per second
by eliminating the additional processing at the end of the
image row. For 8-connectivity CCA such a method cannot
be found in the literature. The architecture proposed in this
paper requires significantly fewer LUTs and registers for an
architecture processing the same image size. Another major
advantage of the proposed algorithm compared to [10] is the
identification and analysis of the worst case image pattern
which makes it applicable for real-time processing.

Comparison to [14]/ [19]: The CCA architecture in [14]/
[19] is a basic version of [1]. It provides memory for 256

1051-8215 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSVT.2015.2450371, IEEE Transactions on Circuits and Systems for Video Technology

15

TABLE IX
COMPARISON OF SEVERAL CCA HARDWARE ARCHITECTURES.

(A) AREA, (C) COMPONENT COUNT, (FOM) FIRST-ORDER MOMENT, (BB) BOUNDING BOX

Implementation
of architecture Technology Image size

[pixel]
Extracted FV LUTs Registers BRAM [bit]

fmax

[MHz]
Worst case throughput

[MPixel
s

]

[1] Virtex 2 640× 480 A, C 1757 600 72k 40.64 32.5
[10] Virtex 2 256× 256 A, FOM 4587 3154 234k 95.7 N/A

[14]/ [19] Spartan II 670× 480 A, C 810 286 16k N/A N/A
[33] Stratix 2k × 2k N/A 1.5k-10k LE 53k-409k 61-72 61-72
[43] Virtex 4 640× 480 N/A 649 641 1142 49.73 ≤24.86

This work Kintex 7 256× 256 BB 493 296 108k 185.59 148.47
UHD8k BB 818 444 548k 170.53 136.42

labels, i.e. does not cover a worst case scenario. Therefore, a
meaningful comparison to this work is not possible.

Comparison to [33]: In [33] a measure for the level of
concavity in image components is introduced, therefore the
output results for a complex input image differs from the
output of the proposed architecture. The authors state their
architecture requires between 1.5k and 10k logic elements to
process a four megapixel image, where one logic element is
equals to a 4-input LUT and a flip-flop, which is more than
the architecture in this work requires to process a comparable
image size. In [33] all information are obtained by local
operations propagating tags to the next image row. In the
proposed algorithm the connection between distant component
segments is identified by a global equivalence table which
allows feature vectors to be extracted for arbitrarily shaped
components.

Comparison to [43]: The architecture in [43], based on
a two-pass algorithm, requires the complete image to be
stored before the labelling process starts, i.e. large images
cannot be processed completely on an FPGA due to a lack of
sufficient on-chip memory. The two-pass algorithm requires
a minimum of 2 clock cycles to process a single pixel. For
stream processing an additional buffer is required to store
the pixels received while the second pass of the previous
image is carried out. The proposed architecture uses a single-
pass algorithm which does not require the complete image to
be stored and, therefore, requires significantly less memory
resources.

CONCLUSION

In this paper a resource-efficient hardware architecture for
connected components analysis on an FPGA is presented. Due
to its efficient design, it is possible to reduce memory resources
by a factor of more than two orders of magnitude compared an
implementation of the classical connected component labelling
algorithm. Compared to the most memory-efficient state-of-
the-art single-pass connected component analysis architec-
tures, 42% or more of the on-chip memory resources are
saved depending on the selected feature vector. To achieve
this a novel principle to detect finished image objects is
used allowing memory resources to be efficiently recycled.
On the algorithm level, auxiliary data structures were added
to detect image patterns which were not taken into account
in the algorithms of several previous hardware architectures.
Therefore, arbitrary image patterns are analysed correctly
with the proposed architecture. For processing a video stream

consisting of worst case patterns, the proposed architecture
achieves a throughput of up to 166 megapixels per second. To
the best of our knowledge this is the highest throughput of a
connected component analysis architecture for 8-connectivity
processing one pixel per clock cycle which has been achieved
on an FPGA. Further improvements can be obtained by
parallel processing of several pixels per clock cycles, e.g.
by image slicing. This requires a basic unit to process the
individual image slices, which the proposed architecture can
be used for, too.

REFERENCES

[1] N. Ma, D. Bailey, and C. Johnston, “Optimised single pass con-
nected components analysis,” in International Conference on Field
Programmable Technology (FPT), Dec. 2008, pp. 185 –192.

[2] Recommendation ITU-R BT.2020-1 Parameter values for ultra-high
definition television systems for production and international programme
exchange, International Telecommunication Union, Jun. 2014.

[3] J. C. Lasheras, E. Villermaux, and E. J. Hopfinger, “Break-up and
atomization of a round water jet by a high-speed annular air jet,” Journal
of Fluid Mechanics, vol. 357, pp. 351–379, Sept. 1998.

[4] J. Kim and T. Chen, “A VLSI architecture for video-object segmenta-
tion,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 13, no. 1, pp. 83–96, Jan. 2003.

[5] S. Chan, S. Zhang, J.-F. Wu, H.-J. Tan, J. Ni, and Y. Hung, “On
the hardware/software design and implementation of a high definition
multiview video surveillance system,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 3, no. 2, pp. 248–262, Jun.
2013.

[6] A. Agrawala and A. Kulkarni, “A sequential approach to the extraction
of shape features,” Computer Graphics and Image Processing, vol. 6,
no. 6, pp. 538–557, Dec. 1977.

[7] M. Klaiber, L. Rockstroh, Z. Wang, Y. Baroud, and S. Simon, “A
memory-efficient parallel single pass architecture for connected com-
ponent labeling of streamed images,” in International Conference on
Field-Programmable Technology (FPT), Dec. 2012, pp. 159–165.

[8] J. F. Eusse, R. Leupers, G. Ascheid, P. Sudowe, B. Leibe, and T. Sadasue,
“A flexible ASIP architecture for connected components labeling in
embedded vision applications,” in Design, Automation and Test in
Europe Conference and Exhibition (DATE), Mar. 2014, pp. 1–6.

[9] Z. Yu, L. Claesen, Y. Pan, A. Motten, Y. Wang, and X. Yan, “SoC
processor for real-time object labeling in life camera streams with low
line level latency,” in IEEE International Symposium on Circuits and
Systems (ISCAS), Jun. 2014, pp. 345–348.

[10] F. Zhao, H. Lu, and Z. Zhang, “Real-time single-pass connected com-
ponents analysis algorithm,” EURASIP Journal on Image and Video
Processing, vol. 2013, p. 21, 2013.

[11] L. He, Y. Chao, K. Suzuki, and K. Wu, “Fast connected-component
labeling,” Pattern Recognition, vol. 42, no. 9, pp. 1977–1987, Sep 2009.

[12] L. Lacassagne and B. Zavidovique, “Light speed labeling: efficient
connected component labeling on RISC architectures,” Journal of Real-
Time Image Processing, vol. 6, no. 2, pp. 117–135, Jun. 2011.

[13] F. Nina Paravecino and D. Kaeli, “Accelerated connected component
labeling using CUDA framework,” in Computer Vision and Graphics,
ser. Lecture Notes in Computer Science, L. Chmielewski, R. Kozera, B.-
S. Shin, and K. Wojciechowski, Eds. Springer International Publishing,
2014, vol. 8671, pp. 502–509.

1051-8215 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSVT.2015.2450371, IEEE Transactions on Circuits and Systems for Video Technology

16

[14] D. Bailey and C. Johnston, “Single pass connected components analy-
sis,” in Proceedings of Image and Vision Computing New Zealand, 2007,
pp. 282–287.

[15] D. Burger, J. R. Goodman, and A. Kägi, “Memory bandwidth limitations
of future microprocessors,” in 23rd Annual International Symposium on
Computer Architecture, vol. 24, no. 2, Philadelphia, Pennsylvania, May
1996, pp. 78–89.

[16] D. Hackenberg, D. Molka, and W. E. Nagel, “Comparing cache archi-
tectures and coherency protocols on x86-64 multicore SMP systems,”
in Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO 42. New York, NY, USA: ACM,
2009, pp. 413–422.

[17] 7 Series FPGAs Overview DS180 (v1.16), Xilinx, Inc., Oct. 2014.
[18] Stratix V Device Handbook - Volume 1: Device Interfaces and Integra-

tion, Altera Corporation, Jul. 2014.
[19] C. Johnston and D. Bailey, “FPGA implementation of a single pass

connected components algorithm,” in 4th IEEE International Symposium
on Electronic Design, Test and Applications, Jan. 2008, pp. 228 –231.

[20] A. Rosenfeld and J. L. Pfaltz, “Sequential operations in digital picture
processing,” Journal of the ACM, vol. 13, pp. 471–494, Oct. 1966.

[21] J. T. Schwartz, M. Sharir, and A. Siegel, “An efficient algorithm for
finding connected components in a binary image,” Robotics Research
Technical Report 38. New York Univ. New York, Tech. Rep., Feb. 1985.

[22] M. B. Dillencourt, H. Samet, and M. Tamminen, “A general approach
to connected-component labeling for arbitrary image representations,”
Journal of the ACM, vol. 39, no. 2, pp. 253–280, Apr. 1992.

[23] R. Seidel and M. Sharir, “Top-down analysis of path compression,” SIAM
Journal on Computing, vol. 34, no. 3, pp. 515–525, Mar. 2005.

[24] R. Tarjan and J. van Leeuwen, “Worst-case analysis of set union
algorithms,” Journal of the ACM, vol. Volume 31 Issue 2, pp. 245 –
281, 1984.

[25] V. Khanna, P. Gupta, and C. Hwang, “Finding connected components
in digital images by aggressive reuse of labels,” Image and Vision
Computing, vol. 20, no. 8, pp. 557 – 568, 2002.

[26] L. Ni, K. Wong, and D. Yen, “Single pass method for labeling
black/white image objects (pipeline processing),” IBM Tech. Disclosure
Bull.;(United States), vol. 10, 1984.

[27] A. Abubaker, R. Qahwaji, S. Ipson, and M. Saleh, “One scan connected
component labeling technique,” in IEEE International Conference on
Signal Processing and Communications. ICSPC., Nov. 2007, pp. 1283–
1286.

[28] J. De Bock and W. Philips, “Fast and memory efficient 2-D connected
components using linked lists of line segments,” IEEE Transactions on
Image Processing, vol. 19, no. 12, pp. 3222–3231, Dec. 2010.

[29] X. Yang, “Design of fast connected components hardware,” in Computer
Society Conference on Computer Vision and Pattern Recognition, 1988,
pp. 937–944.

[30] P. Chen, H. Zhao, C. Tao, and H. Sang, “Block-run-based connected
component labelling algorithm for GPGPU using shared memory,”
Electronics Letters, vol. 47, no. 24, pp. 1309 –1311, Nov. 2011.

[31] R. Lumia, L. Shapiro, and O. Zuniga, “A new connected components
algorithm for virtual memory computers,” Computer Vision, Graphics,
and Image Processing, vol. 22, no. 2, pp. 287 – 300, 1983.

[32] M. Jablonski and M. Gorgon, “Handel-C implementation of classical
component labelling algorithm,” in Euromicro Symposium on Digital
System Design (DSD), Sep. 2004, pp. 387 – 393.

[33] Y. Ito and K. Nakano, “Low-latency connected component labeling using
an FPGA,” International Journal of Foundations of Computer Science,
vol. 21, no. 03, pp. 405–425, 2010.

[34] R. M. Haralick and L. G. Shapiro, “Glossary of computer vision terms,”
Pattern Recognition, vol. 24, no. 1, pp. 69 – 93, 1991.

[35] D. Knuth, The Art of Computer Programming: Fundamental algorithms,
ser. The Art of Computer Programming. Addison-Wesley, 1997, vol. 1,
pp. 372–373.

[36] J. Hopcroft and J. Ullman, “Set merging algorithms,” SIAM Journal on
Computing, vol. 2, no. 4, pp. 294–303, 1973.

[37] B. Bässler, “Implementation and hardware accelerated verification of
a connected component architecture,” Master’s thesis, University of
Stuttgart, 2014.

[38] S. Tasiran and K. Keutzer, “Coverage metrics for functional validation
of hardware designs,” Design Test of Computers, IEEE, vol. 18, no. 4,
pp. 36–45, Jul 2001.

[39] P. G. Emma, W. R. Reohr, and M. Meterelliyoz, “Rethinking refresh:
Increasing availability and reducing power in DRAM for cache appli-
cations,” IEEE Micro, vol. 28, no. 6, pp. 47–56, 2008.

[40] USC-SIPI, “USC-SIPI image database,” 2014. [Online]. Available:
http://sipi.usc.edu/database, accessed 2014-07-21.

[41] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Transactions on Systems, Man and Cybernetics, vol. 9, no. 1, pp.
62–66, 1979.

[42] Spartan-6 FPGA Configurable Logic Block User Guide UG384 (v1.1),
Feb. 2010.

[43] K. Appiah, A. Hunter, P. Dickinson, and J. Owens, “A run-length
based connected component algorithm for FPGA implementation,” in
International Conference on Field Programmable Technology (FPT),
Dec. 2008, pp. 177 –184.

Michael J. Klaiber received the diploma degree
(Dipl.-Ing.) in Electrical Engineering and Informa-
tion Technology from the University of Stuttgart,
Germany in 2011.
Since 2011 he has pursued a doctorate degree and
worked as a research associate at the Institute of Par-
allel and Distributed System, department for Parallel
Systems of University of Stuttgart, Germany.
His research interests include image processing on
FPGAs, computer engineering and hardware archi-
tectures.

Donald G. Bailey received the B.E. (Hons) degree in
Electrical Engineering in 1982, and the PhD degree
in Electrical and Electronic Engineering from the
University of Canterbury, New Zealand in 1985.
From 1985 to 1987, he applied image analysis to
the wool and paper industries within New Zealand.
From 1987 to 1989 he was a Visiting Research En-
gineer at University of California at Santa Barbara.
Dr Bailey joined Massey University in Palmerston
North, New Zealand as Director of the Image Anal-
ysis Unit at the end of 1989. He is currently an

Associate Professor in the School of Engineering and Advanced Technology,
and leader of the Image and Signal Processing Research Group. His primary
research interests include applications of image analysis, machine vision, and
robot vision. One area of particular interest is the application of FPGAs to
implementing image processing algorithms.

Yousef O. Baroud received the B.Sc. degree in Elec-
tronics and Communication Engineering in 2006,
and M.Sc. in Information Technology (INFOTECH
Program) with embedded systems specialisation
from University of Stuttgart, Germany in 2011. In
2012 he joined the Institute of Parallel and Dis-
tributed Systems, department for Parallel Systems at
University of Stuttgart as a research assistant. His
research interests include hardware architectures,
image processing and data compression.

Sven Simon received the diploma from RWTH
Aachen (1992) and the Ph.D. from Technische Uni-
versität München (1996) both in Electrical Engineer-
ing. In 1996, he joined Siemens AG and Infineon
Technologies AG in 1998 focusing on hardware
architectures and digital signal processing. In 1998
he became project manager and was nominated for
the Infineon Inventors Award in 2000. In 2001, he
became professor at Hochschule Bremen, Germany,
heading a research group for hardware architectures
and sensor systems. In 2007, he became full profes-

sor and head of the Parallel Systems Department at the Institute of Parallel
and Distributed Systems of the University of Stuttgart. His research interests
include parallel algorithms, hardware architectures and sensor systems. He
has numerous publications as well as a number of patents.

